Optimizing and Modeling the Anaerobic Digestion of Lignocellulosic Wastes by Rumen Cultures

2012 ◽  
pp. 259-289
Author(s):  
Zhen-Hu Hu ◽  
Han-Qing Yu
2020 ◽  
Vol 23 (3) ◽  
pp. 105-110
Author(s):  
Fatemeh Rahimi-Ajdadi ◽  
Masoomeh Esmaili

AbstractAgricultural crop residues like stems, straws and leaves are valuable resources for biofuel production, especially methane, due to anaerobic digestion. Biogas from agricultural lignocellulosic wastes is capable of attaining sustainable energy yields without environmental pollution. Farmers in many developing countries burn these wastes throughout their fields, imposing environmental hazard due to emission of greenhouse gases. The main problem in this field is the recalcitrance of the agricultural lignocellulose waste that limits its enzymatic degradation and hydrolysis efficiency and consequently decreases biogas production. Therefore, efficient pre-treatments prior to anaerobic digestion are essential. Various pre-treatment methods are used for increasing the anaerobic digestibility of lignocellulose biomass, such as physical (mechanical, thermal, etc.), chemical, biological and combined pre-treatments. This paper reviews different pre-treatments used in anaerobic digestion for the agricultural lignocellulosic wastes and explains the advantages and disadvantages of each. The most frequently used pre-treatments for main agricultural wastes in process of biogas production are also introduced.


2010 ◽  
pp. 259-278 ◽  
Author(s):  
Zhen-Hu Hu ◽  
Zheng-Bo Yue ◽  
Shao-Yang Liu ◽  
Guo-Ping Sheng ◽  
Han-Qing Yu

2021 ◽  
Vol 280 ◽  
pp. 124479
Author(s):  
Beatriz de Diego-Díaz ◽  
Francisco J. Peñas ◽  
Juana Fernández- Rodríguez

2019 ◽  
Vol 9 (21) ◽  
pp. 4655 ◽  
Author(s):  
Tahseen Sayara ◽  
Antoni Sánchez

Anaerobic digestion (AD) has become extremely popular in the last years to treat and valorize organic wastes both at laboratory and industrial scales, for a wide range of highly produced organic wastes: municipal wastes, wastewater sludge, manure, agrowastes, food industry residuals, etc. Although the principles of AD are well known, it is very important to highlight that knowing the biochemical composition of waste is crucial in order to know its anaerobic biodegradability, which makes an AD process economically feasible. In this paper, we review the main principles of AD, moving to the specific features of lignocellulosic wastes, especially regarding the pretreatments that can enhance the biogas production of such wastes. The main point to consider is that lignocellulosic wastes are present in any organic wastes, and sometimes are the major fraction. Therefore, improving their AD could cause a boost in the development in this technology. The conclusions are that there is no unique strategy to improve the anaerobic biodegradability of lignocellulosic wastes, but pretreatments and codigestion both have an important role on this issue.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2058 ◽  
Author(s):  
Aditi David ◽  
Tanvi Govil ◽  
Abhilash Tripathi ◽  
Julie McGeary ◽  
Kylie Farrar ◽  
...  

This article aims to study the codigestion of food waste (FW) and three different lignocellulosic wastes (LW) (Corn stover (CS), Prairie cordgrass (PCG), and Unbleached paper (UBP)) for thermophilic anaerobic digestion to overcome the limitations of digesting food waste alone (volatile fatty acids accumulation and low C:N ratio). Using an enriched thermophilic methanogenic consortium, all the food and lignocellulosic waste mixtures showed positive synergistic effects of codigestion. After 30 days of incubation at 60 °C (100 rpm), the highest methane yield of 305.45 L·kg−1 volatile solids (VS) was achieved with a combination of FW-PCG-CS followed by 279.31 L·kg−1 VS with a mixture of FW-PCG. The corresponding volatile solids reduction for these two co-digestion mixtures was 68% and 58%, respectively. This study demonstrated a reduced hydraulic retention time for methane production using FW and LW.


Sign in / Sign up

Export Citation Format

Share Document