Remote Sensing for Aboveground Biomass Estimation in Boreal Forests

Author(s):  
M.A. Stelmaszczuk-Górska ◽  
C.J. Thiel ◽  
C.C. Schmullius
Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1073 ◽  
Author(s):  
Li ◽  
Li ◽  
Li ◽  
Liu

Forest biomass is a major store of carbon and plays a crucial role in the regional and global carbon cycle. Accurate forest biomass assessment is important for monitoring and mapping the status of and changes in forests. However, while remote sensing-based forest biomass estimation in general is well developed and extensively used, improving the accuracy of biomass estimation remains challenging. In this paper, we used China’s National Forest Continuous Inventory data and Landsat 8 Operational Land Imager data in combination with three algorithms, either the linear regression (LR), random forest (RF), or extreme gradient boosting (XGBoost), to establish biomass estimation models based on forest type. In the modeling process, two methods of variable selection, e.g., stepwise regression and variable importance-base method, were used to select optimal variable subsets for LR and machine learning algorithms (e.g., RF and XGBoost), respectively. Comfortingly, the accuracy of models was significantly improved, and thus the following conclusions were drawn: (1) Variable selection is very important for improving the performance of models, especially for machine learning algorithms, and the influence of variable selection on XGBoost is significantly greater than that of RF. (2) Machine learning algorithms have advantages in aboveground biomass (AGB) estimation, and the XGBoost and RF models significantly improved the estimation accuracy compared with the LR models. Despite that the problems of overestimation and underestimation were not fully eliminated, the XGBoost algorithm worked well and reduced these problems to a certain extent. (3) The approach of AGB modeling based on forest type is a very advantageous method for improving the performance at the lower and higher values of AGB. Some conclusions in this paper were probably different as the study area changed. The methods used in this paper provide an optional and useful approach for improving the accuracy of AGB estimation based on remote sensing data, and the estimation of AGB was a reference basis for monitoring the forest ecosystem of the study area.


2020 ◽  
Vol 12 (18) ◽  
pp. 2926
Author(s):  
Pierre Migolet ◽  
Kalifa Goïta

The present study developed methods using remote sensing for estimation of total dry aboveground biomass (AGB) of oil palm in the Congo Basin. To achieve this, stem diameters at breast height (DBH, 1.3 m) and stem heights were measured in an oil palm plantation located in Gabon (Congo Basin, Central Africa). These measurements were used to determine AGB in situ. The remote sensing approach that was used to estimate AGB was textural ordination (FOTO) based upon Fourier transforms that were applied, respectively, to PlanetScope and FORMOSAT-2 satellite images taken from the area. The FOTO method is based on the combined use of two-dimensional (2D) Fast Fourier Transform (FFT) and Principal Component Analysis (PCA). In the context of the present study, it was used to characterize the variation in canopy structure and to estimate the aboveground biomass of mature oil palms. Two types of equations linking FOTO indices to in situ biomass were developed: multiple linear regressions (MLR); and multivariate adaptive spline regressions (MARS). All best models developed yielded significant results, regardless of whether they were derived from PlanetScope or from FORMOSAT-2 images. Coefficients of determination (R2) varied between 0.80 and 0.92 (p ≤ 0.0005); and relative root mean-square-errors (%RMSE) were less than 10.12% in all cases. The best model was obtained using MARS approach with FOTO indices from FORMOSAT-2 (%RMSE = 6.09%).


2014 ◽  
Vol 9 (1) ◽  
pp. 63-105 ◽  
Author(s):  
Dengsheng Lu ◽  
Qi Chen ◽  
Guangxing Wang ◽  
Lijuan Liu ◽  
Guiying Li ◽  
...  

Author(s):  
Laura Duncanson ◽  
Amy Neuenschwander ◽  
Carlos Alberto Silva ◽  
Paul Montesano ◽  
Eric Guenther ◽  
...  

2018 ◽  
Vol 10 (7) ◽  
pp. 1151 ◽  
Author(s):  
Michael Schlund ◽  
Malcolm Davidson

While considerable research has focused on using either L-band or P-band SAR (Synthetic Aperture Radar) on their own for forest biomass retrieval, the use of the two bands simultaneously to improve forest biomass retrieval remains less explored. In this paper, we make use of L- and P-band airborne SAR and in situ data measured in the field together with laser scanning data acquired over one hemi-boreal (Remningstorp) and one boreal (Krycklan) forest study area in Sweden. We fit statistical models to different combinations of topographic-corrected SAR backscatter and forest heights estimated from PolInSAR for the biomass estimation, and evaluate retrieval performance in terms of R2 and using 10-fold cross-validation. The study shows that specific combinations of radar observables from L- and P-band lead to biomass predictions that are more accurate in comparison with single-band retrievals. The correlations and accuracies between the combinations of SAR features and aboveground biomass are consistent across the two study areas, whereas the retrieval performance varied for individual bands. P-band-based retrievals were more accurate than L-band for the hemi-boreal Remningstorp site and less accurate than L-band for the boreal Krycklan site. The aboveground biomass levels as well as the ground topography differ between the two sites. The results suggest that P-band is more sensitive to higher biomass and L-band to lower biomass forests. The forest height from PolInSAR improved the results at L-band in the higher biomass substantially, whereas no improvement was observed at P-band in both study areas. These results are relevant in the context of combining information over boreal forests from future low-frequency SAR missions such as the European Space Agency (ESA) BIOMASS mission, which will operate at P-band, and future L-band missions planned by several space agencies.


1998 ◽  
Vol 63 ◽  
Author(s):  
P. Smiris ◽  
F. Maris ◽  
K. Vitoris ◽  
N. Stamou ◽  
P. Ganatsas

This  study deals with the biomass estimation of the understory species of Pinus halepensis    forests in the Kassandra peninsula, Chalkidiki (North Greece). These  species are: Quercus    coccifera, Quercus ilex, Phillyrea media, Pistacia lentiscus, Arbutus  unedo, Erica arborea, Erica    manipuliflora, Smilax aspera, Cistus incanus, Cistus monspeliensis,  Fraxinus ornus. A sample of    30 shrubs per species was taken and the dry and fresh weights and the  moisture content of    every component of each species were measured, all of which were processed  for aboveground    biomass data. Then several regression equations were examined to determine  the key words.


Sign in / Sign up

Export Citation Format

Share Document