scholarly journals Aboveground Forest Biomass Estimation Combining L- and P-Band SAR Acquisitions

2018 ◽  
Vol 10 (7) ◽  
pp. 1151 ◽  
Author(s):  
Michael Schlund ◽  
Malcolm Davidson

While considerable research has focused on using either L-band or P-band SAR (Synthetic Aperture Radar) on their own for forest biomass retrieval, the use of the two bands simultaneously to improve forest biomass retrieval remains less explored. In this paper, we make use of L- and P-band airborne SAR and in situ data measured in the field together with laser scanning data acquired over one hemi-boreal (Remningstorp) and one boreal (Krycklan) forest study area in Sweden. We fit statistical models to different combinations of topographic-corrected SAR backscatter and forest heights estimated from PolInSAR for the biomass estimation, and evaluate retrieval performance in terms of R2 and using 10-fold cross-validation. The study shows that specific combinations of radar observables from L- and P-band lead to biomass predictions that are more accurate in comparison with single-band retrievals. The correlations and accuracies between the combinations of SAR features and aboveground biomass are consistent across the two study areas, whereas the retrieval performance varied for individual bands. P-band-based retrievals were more accurate than L-band for the hemi-boreal Remningstorp site and less accurate than L-band for the boreal Krycklan site. The aboveground biomass levels as well as the ground topography differ between the two sites. The results suggest that P-band is more sensitive to higher biomass and L-band to lower biomass forests. The forest height from PolInSAR improved the results at L-band in the higher biomass substantially, whereas no improvement was observed at P-band in both study areas. These results are relevant in the context of combining information over boreal forests from future low-frequency SAR missions such as the European Space Agency (ESA) BIOMASS mission, which will operate at P-band, and future L-band missions planned by several space agencies.

2020 ◽  
Vol 12 (4) ◽  
pp. 650
Author(s):  
Pablo Sánchez-Gámez ◽  
Carolina Gabarro ◽  
Antonio Turiel ◽  
Marcos Portabella

The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and the National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) missions are providing brightness temperature measurements at 1.4 GHz (L-band) for about 10 and 4 years respectively. One of the new areas of geophysical exploitation of L-band radiometry is on thin (i.e., less than 1 m) Sea Ice Thickness (SIT), for which theoretical and empirical retrieval methods have been proposed. However, a comprehensive validation of SIT products has been hindered by the lack of suitable ground truth. The in-situ SIT datasets most commonly used for validation are affected by one important limitation: They are available mainly during late winter and spring months, when sea ice is fully developed and the thickness probability density function is wider than for autumn ice and less representative at the satellite spatial resolution. Using Upward Looking Sonar (ULS) data from the Woods Hole Oceanographic Institution (WHOI), acquired all year round, permits overcoming the mentioned limitation, thus improving the characterization of the L-band brightness temperature response to changes in thin SIT. State-of-the-art satellite SIT products and the Cumulative Freezing Degree Days (CFDD) model are verified against the ULS ground truth. The results show that the L-band SIT can be meaningfully retrieved up to 0.6 m, although the signal starts to saturate at 0.3 m. In contrast, despite the simplicity of the CFDD model, its predicted SIT values correlate very well with the ULS in-situ data during the sea ice growth season. The comparison between the CFDD SIT and the current L-band SIT products shows that both the sea ice concentration and the season are fundamental factors influencing the quality of the thickness retrieval from L-band satellites.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1073 ◽  
Author(s):  
Li ◽  
Li ◽  
Li ◽  
Liu

Forest biomass is a major store of carbon and plays a crucial role in the regional and global carbon cycle. Accurate forest biomass assessment is important for monitoring and mapping the status of and changes in forests. However, while remote sensing-based forest biomass estimation in general is well developed and extensively used, improving the accuracy of biomass estimation remains challenging. In this paper, we used China’s National Forest Continuous Inventory data and Landsat 8 Operational Land Imager data in combination with three algorithms, either the linear regression (LR), random forest (RF), or extreme gradient boosting (XGBoost), to establish biomass estimation models based on forest type. In the modeling process, two methods of variable selection, e.g., stepwise regression and variable importance-base method, were used to select optimal variable subsets for LR and machine learning algorithms (e.g., RF and XGBoost), respectively. Comfortingly, the accuracy of models was significantly improved, and thus the following conclusions were drawn: (1) Variable selection is very important for improving the performance of models, especially for machine learning algorithms, and the influence of variable selection on XGBoost is significantly greater than that of RF. (2) Machine learning algorithms have advantages in aboveground biomass (AGB) estimation, and the XGBoost and RF models significantly improved the estimation accuracy compared with the LR models. Despite that the problems of overestimation and underestimation were not fully eliminated, the XGBoost algorithm worked well and reduced these problems to a certain extent. (3) The approach of AGB modeling based on forest type is a very advantageous method for improving the performance at the lower and higher values of AGB. Some conclusions in this paper were probably different as the study area changed. The methods used in this paper provide an optional and useful approach for improving the accuracy of AGB estimation based on remote sensing data, and the estimation of AGB was a reference basis for monitoring the forest ecosystem of the study area.


2013 ◽  
Vol 5 (3) ◽  
pp. 1001-1023 ◽  
Author(s):  
Chelsea Robinson ◽  
Sassan Saatchi ◽  
Maxim Neumann ◽  
Thomas Gillespie

Author(s):  
Kun Xu ◽  
Jinghe Jiang ◽  
Fangliang He

Accurate estimation of forest biomass is essential to quantify the role forests play at balancing terrestrial carbon. Allometric equations based on tree size have been used for this purpose worldwide. There is little quantitative understanding on how environmental variation may affect tree allometries. Even less known is how to incorporate environmental factors into such equations to improve estimation. Here we tested the effects of climate on tree allometric equations and proposed to model forest biomass by explicitly incorporating climatic factors. Among the five major Canadian timber species tested, the incorporation of climate was not found to improve the allometric models. For trembling aspen and tamarack, the residuals of their conventional allometric models were found strongly related to frost-free period and mean annual temperature, respectively. The predictions of the two best climate-based models were significantly improved, which indicate that trembling aspen and tamarack store more aboveground biomass when growing in warmer than in colder regions. We showed that, under the RCP4.5 modest climate change scenario, there would be a 10% underestimation of aboveground biomass for these two species if the conventional non-climate models would still be in use in 2030. This study suggests the necessity to proactively develop climate-based allometric equations for more accurate and reliable forest biomass estimation.


Author(s):  
Laura Duncanson ◽  
Amy Neuenschwander ◽  
Carlos Alberto Silva ◽  
Paul Montesano ◽  
Eric Guenther ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 550
Author(s):  
Dandan Xu ◽  
Haobin Wang ◽  
Weixin Xu ◽  
Zhaoqing Luan ◽  
Xia Xu

Accurate forest biomass estimation at the individual tree scale is the foundation of timber industry and forest management. It plays an important role in explaining ecological issues and small-scale processes. Remotely sensed images, across a range of spatial and temporal resolutions, with their advantages of non-destructive monitoring, are widely applied in forest biomass monitoring at global, ecoregion or community scales. However, the development of remote sensing applications for forest biomass at the individual tree scale has been relatively slow due to the constraints of spatial resolution and evaluation accuracy of remotely sensed data. With the improvements in platforms and spatial resolutions, as well as the development of remote sensing techniques, the potential for forest biomass estimation at the single tree level has been demonstrated. However, a comprehensive review of remote sensing of forest biomass scaled at individual trees has not been done. This review highlights the theoretical bases, challenges and future perspectives for Light Detection and Ranging (LiDAR) applications of individual trees scaled to whole forests. We summarize research on estimating individual tree volume and aboveground biomass (AGB) using Terrestrial Laser Scanning (TLS), Airborne Laser Scanning (ALS), Unmanned Aerial Vehicle Laser Scanning (UAV-LS) and Mobile Laser Scanning (MLS, including Vehicle-borne Laser Scanning (VLS) and Backpack Laser Scanning (BLS)) data.


The relation between tropical rainforest to the climate variability is very important. This research aims to determine the relationship between aboveground biomass which prefer tree in the tropical rainforest and surrounding temperature. Diameter at breast height (DBH) of ten tree species and surrounding temperature collected data were taken to measure the correlation between the two variables by using statistical test. Furthermore, forest biomass estimation is also important towards the assessment of the productivity, structure and forest condition. The analysis in this research shows that simple linear regression model can be used to predict the future value of DBH for each species. The findings may help the reduction of greenhouse gas emissions with proper conservation and sustainable management.


Sign in / Sign up

Export Citation Format

Share Document