A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems

2014 ◽  
Vol 9 (1) ◽  
pp. 63-105 ◽  
Author(s):  
Dengsheng Lu ◽  
Qi Chen ◽  
Guangxing Wang ◽  
Lijuan Liu ◽  
Guiying Li ◽  
...  
Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1073 ◽  
Author(s):  
Li ◽  
Li ◽  
Li ◽  
Liu

Forest biomass is a major store of carbon and plays a crucial role in the regional and global carbon cycle. Accurate forest biomass assessment is important for monitoring and mapping the status of and changes in forests. However, while remote sensing-based forest biomass estimation in general is well developed and extensively used, improving the accuracy of biomass estimation remains challenging. In this paper, we used China’s National Forest Continuous Inventory data and Landsat 8 Operational Land Imager data in combination with three algorithms, either the linear regression (LR), random forest (RF), or extreme gradient boosting (XGBoost), to establish biomass estimation models based on forest type. In the modeling process, two methods of variable selection, e.g., stepwise regression and variable importance-base method, were used to select optimal variable subsets for LR and machine learning algorithms (e.g., RF and XGBoost), respectively. Comfortingly, the accuracy of models was significantly improved, and thus the following conclusions were drawn: (1) Variable selection is very important for improving the performance of models, especially for machine learning algorithms, and the influence of variable selection on XGBoost is significantly greater than that of RF. (2) Machine learning algorithms have advantages in aboveground biomass (AGB) estimation, and the XGBoost and RF models significantly improved the estimation accuracy compared with the LR models. Despite that the problems of overestimation and underestimation were not fully eliminated, the XGBoost algorithm worked well and reduced these problems to a certain extent. (3) The approach of AGB modeling based on forest type is a very advantageous method for improving the performance at the lower and higher values of AGB. Some conclusions in this paper were probably different as the study area changed. The methods used in this paper provide an optional and useful approach for improving the accuracy of AGB estimation based on remote sensing data, and the estimation of AGB was a reference basis for monitoring the forest ecosystem of the study area.


2020 ◽  
Vol 12 (18) ◽  
pp. 2926
Author(s):  
Pierre Migolet ◽  
Kalifa Goïta

The present study developed methods using remote sensing for estimation of total dry aboveground biomass (AGB) of oil palm in the Congo Basin. To achieve this, stem diameters at breast height (DBH, 1.3 m) and stem heights were measured in an oil palm plantation located in Gabon (Congo Basin, Central Africa). These measurements were used to determine AGB in situ. The remote sensing approach that was used to estimate AGB was textural ordination (FOTO) based upon Fourier transforms that were applied, respectively, to PlanetScope and FORMOSAT-2 satellite images taken from the area. The FOTO method is based on the combined use of two-dimensional (2D) Fast Fourier Transform (FFT) and Principal Component Analysis (PCA). In the context of the present study, it was used to characterize the variation in canopy structure and to estimate the aboveground biomass of mature oil palms. Two types of equations linking FOTO indices to in situ biomass were developed: multiple linear regressions (MLR); and multivariate adaptive spline regressions (MARS). All best models developed yielded significant results, regardless of whether they were derived from PlanetScope or from FORMOSAT-2 images. Coefficients of determination (R2) varied between 0.80 and 0.92 (p ≤ 0.0005); and relative root mean-square-errors (%RMSE) were less than 10.12% in all cases. The best model was obtained using MARS approach with FOTO indices from FORMOSAT-2 (%RMSE = 6.09%).


Author(s):  
Friday Nwabueze Ogana ◽  
Ilker Ercanli

AbstractModelling tree height-diameter relationships in complex tropical rain forest ecosystems remains a challenge because of characteristics of multi-species, multi-layers, and indeterminate age composition. Effective modelling of such complex systems required innovative techniques to improve prediction of tree heights for use for aboveground biomass estimations. Therefore, in this study, deep learning algorithm (DLA) models based on artificial intelligence were trained for predicting tree heights in a tropical rain forest of Nigeria. The data consisted of 1736 individual trees representing 116 species, and measured from 52 0.25 ha sample plots. A K-means clustering was used to classify the species into three groups based on height-diameter ratios. The DLA models were trained for each species-group in which diameter at beast height, quadratic mean diameter and number of trees per ha were used as input variables. Predictions by the DLA models were compared with those developed by nonlinear least squares (NLS) and nonlinear mixed-effects (NLME) using different evaluation statistics and equivalence test. In addition, the predicted heights by the models were used to estimate aboveground biomass. The results showed that the DLA models with 100 neurons in 6 hidden layers, 100 neurons in 9 hidden layers and 100 neurons in 7 hidden layers for groups 1, 2, and 3, respectively, outperformed the NLS and NLME models. The root mean square error for the DLA models ranged from 1.939 to 3.887 m. The results also showed that using height predicted by the DLA models for aboveground biomass estimation brought about more than 30% reduction in error relative to NLS and NLME. Consequently, minimal errors were created in aboveground biomass estimation compared to those of the classical methods.


1998 ◽  
Vol 63 ◽  
Author(s):  
P. Smiris ◽  
F. Maris ◽  
K. Vitoris ◽  
N. Stamou ◽  
P. Ganatsas

This  study deals with the biomass estimation of the understory species of Pinus halepensis    forests in the Kassandra peninsula, Chalkidiki (North Greece). These  species are: Quercus    coccifera, Quercus ilex, Phillyrea media, Pistacia lentiscus, Arbutus  unedo, Erica arborea, Erica    manipuliflora, Smilax aspera, Cistus incanus, Cistus monspeliensis,  Fraxinus ornus. A sample of    30 shrubs per species was taken and the dry and fresh weights and the  moisture content of    every component of each species were measured, all of which were processed  for aboveground    biomass data. Then several regression equations were examined to determine  the key words.


2021 ◽  
Vol 13 (12) ◽  
pp. 2393
Author(s):  
Wanyuan Cai ◽  
Sana Ullah ◽  
Lei Yan ◽  
Yi Lin

Water use efficiency (WUE) is a key index for understanding the ecosystem of carbon–water coupling. The undistinguishable carbon–water coupling mechanism and uncertainties of indirect methods by remote sensing products and process models render challenges for WUE remote sensing. In this paper, current progress in direct and indirect methods of WUE estimation by remote sensing is reviewed. Indirect methods based on gross primary production (GPP)/evapotranspiration (ET) from ground observation, processed models and remote sensing are the main ways to estimate WUE in which carbon and water cycles are independent processes. Various empirical models based on meteorological variables and remote sensed vegetation indices to estimate WUE proved the ability of remotely sensed data for WUE estimating. The analytical model provides a mechanistic opportunity for WUE estimation on an ecosystem scale, while the hypothesis has yet to be validated and applied for the shorter time scales. An optimized response of canopy conductance to atmospheric vapor pressure deficit (VPD) in an analytical model inverted from the conductance model has been also challenged. Partitioning transpiration (T) and evaporation (E) is a more complex phenomenon than that stated in the analytic model and needs a more precise remote sensing retrieval algorithm as well as ground validation, which is an opportunity for remote sensing to extrapolate WUE estimation from sites to a regional scale. Although studies on controlling the mechanism of environmental factors have provided an opportunity to improve WUE remote sensing, the mismatch in the spatial and temporal resolution of meteorological products and remote sensing data, as well as the uncertainty of meteorological reanalysis data, add further challenges. Therefore, improving the remote sensing-based methods of GPP and ET, developing high-quality meteorological forcing datasets and building mechanistic remote sensing models directly acting on carbon–water cycle coupling are possible ways to improve WUE remote sensing. Improvement in direct WUE remote sensing methods or remote sensing-driven ecosystem analysis methods can promote a better understanding of the global ecosystem carbon–water coupling mechanisms and vegetation functions–climate feedbacks to serve for the future global carbon neutrality.


Sign in / Sign up

Export Citation Format

Share Document