Studies on the Magnesium Alloys Cladding in the Plastic Forming Processes (Die Forging and Extrusion) Using as the Clad Layer Corrosion Resistant Aluminum Alloys

2015 ◽  
pp. 257-262
Author(s):  
Piotr Korczak ◽  
Bartlomiej Plonka ◽  
Dariusz Lesniak ◽  
Marek Nowak ◽  
Krzysztof Remsak ◽  
...  
2006 ◽  
Vol 510-511 ◽  
pp. 334-337
Author(s):  
Shae K. Kim

It is obvious that automotive industry worldwide is predicting significant growth in the use of magnesium alloys for weight reduction to decrease fuel consumption and emission. About a half decade ago, the price of magnesium alloys was more than twice that of aluminum alloys on a weight basis. Currently, magnesium alloys cost about one and a half times that of aluminum alloys on a weight basis, and thus the price of magnesium alloys is the same as or lower than that of aluminum alloys on a per volume basis. However, in considering the performance of magnesium components (not their specific mechanical properties) and recycling aspect of magnesium alloys, it is required to realize niche applications of magnesium alloys, which meet the cost requirement on performance basis and/or offer more than weight reduction. There are many other factors that make magnesium a good choice: component consolidation, improved safety for driver and passengers, and improved noise vibration and harshness (NVH), to name a few. As one of these efforts to adopt magnesium alloys in automotive component, this paper describes the research strategy of cold chamber type 2-cavity die casting of AM50 magnesium alloy for developing the steering column lock housing module with emphasis on cost driving factors and necessities for cost reduction, explaining why AM50 magnesium alloy is chosen with design and die casting process optimization.


2020 ◽  
pp. 3-12
Author(s):  
Vyacheslav V. Maksarov ◽  
Alexey D. Khalimonenko ◽  
Taras S. Golikov ◽  
Dmitry D. Maksimov

2005 ◽  
Vol 475-479 ◽  
pp. 517-520
Author(s):  
Hwa Chul Jung ◽  
Kwang Seon Shin

Semi-solid processing is recognized as an attractive alternative method for the near net-shape production of engineering components. Although there has been a significant progress in semi-solid processing of aluminum alloys, very limited information is available on semi-solid processing of magnesium alloys, except for the thixomolding process. Continuous casting process has been utilized to produce the billets with the desirable cross-section at a reduced production cost for many metals, such as steel, copper and aluminum alloys. It has also been commercially utilized to produce the aluminum billets with non-dendritic microstructure for subsequent thixocasting process. However, continuous casting of magnesium billets for semi-solid processing has not yet been commercialized due to the difficulties involved in casting of magnesium alloys. In the present study, a continuous casting process has been developed for the production of the cylindrical billets of magnesium alloys for the subsequent thixocasting process. In order to obtain the desired non-dendritic microstructure with an excellent degree of homogeneity both in microstructure and composition, an electromagnetic stirring system has been utilized. A continuous casting process has been proven to be an efficient way to produce the high quality billets of magnesium alloys for semi-solid processing. A prototype air conditioner cover was produced using the continuously cast billets of AZ91 alloy.


2020 ◽  
Vol 51 (5) ◽  
pp. 2509-2522 ◽  
Author(s):  
Pengyu Zhao ◽  
Tian Xie ◽  
Xinmei Xu ◽  
Hong Zhu ◽  
Fuyong Cao ◽  
...  

2006 ◽  
Vol 129 (3) ◽  
pp. 422-430 ◽  
Author(s):  
Sp. G. Pantelakis ◽  
N. D. Alexopoulos ◽  
A. N. Chamos

The potential of cast magnesium alloys for being used as structural materials in lightweight applications is assessed. The ability of the alloys for mechanical performance is evaluated and compared against the ability of widely used structural aircraft cast aluminum alloys. The specific quality index QDS, devised for evaluating both cast and wrought aluminum alloys, will be exploited to evaluate the ability of a number of cast magnesium alloys for mechanical performance. The exploited quality index QDS involves the material’s yield strength Rp to account for strength, the strain energy density W to account for both tensile ductility and toughness, and the material’s density ρ. The effects of differences in chemical composition and heat treatment conditions on the mechanical performance of cast magnesium alloys have been assessed. The use of the quality index QDS has been proved to appreciably facilitate the evaluation of the mechanical performance of cast magnesium alloys and also the comparison between alloys of different base materials. The results quantify the gap to be closed such as to involve cast magnesium alloys in aircraft structural applications.


2019 ◽  
Vol 946 ◽  
pp. 156-161
Author(s):  
Ainagul Toleuova ◽  
Bakhyt Balbekova ◽  
Irina Erakhtina

The necessity of finding scientifically grounded methods for the development of new heat-resistant, wear-resistant and corrosion-resistant aluminum alloys is presented in the present work. For this purpose, the analysis of modern methods for computer calculation of phase diagrams in multicomponent metal systems using the Thermo-Calc program was carried out. Therefore, a quantitative analysis of the phase diagram the Al-Cu-Mn-Zr system was carried out, as the basis of deformable high-temperature aluminum alloys. Isothermal and polythermal sections of the phase diagram were calculated in this system. The temperatures of phase transformations were calculated. The mass and volume fractions of the phases in the studied alloys were calculated. The range of concentrations and temperatures at which the maximum amount of dispersoids Al20Cu2Mn3 may be achieved, was defined. The minimum amount of Al2Cu phase is calculated, which should correspond to the best heat resistance of alloys. It is substantiated that in the alloys of a new generation of ALTEK type, the use of homogenization and quenching operations is inexpedient, which implies the possibility of a significant reduction in the cost of heat treatment in comparison with industrial alloys, such as 1201.


2017 ◽  
Vol 62 (4) ◽  
pp. 2365-2370 ◽  
Author(s):  
L. Cizek ◽  
S. Rusz ◽  
O. Hilser ◽  
R. Śliwa ◽  
D. Kuc ◽  
...  

AbstractA growing interest in wrought magnesium alloys has been noticed recently, mainly due to development of various SPD (severe plastic deformation) methods that enable significant refinement of the microstructure and – as a result – improvement of various functional properties of products. However, forming as-cast magnesium alloys with the increased aluminum content at room temperature is almost impossible. Therefore, application of heat treatment before forming or forming at elevated temperature is recommended for these alloys. The paper presents the influence of selected heat treatment conditions on the microstructure and the mechanical properties of the as-cast AZ91 alloy. Deformation behaviour of the as-cast AZ61 alloy at elevated temperatures was analysed as well. The microstructure analysis was performed by means of both light microscopy and SEM. The latter one was used also for fracture analysis. Moreover, the effect of chemical composition modification by lithium addition on the microstructure of the AZ31-based alloy is presented. The test results can be helpful in preparation of the magnesium-aluminum alloys for further processing by means of SPD methods.


Sign in / Sign up

Export Citation Format

Share Document