Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 369
Author(s):  
Shengji Xia ◽  
Xinran Zhang ◽  
Yuanchen Zhao ◽  
Fibor J. Tan ◽  
Pan Li ◽  
...  

The membrane separation process is being widely used in water treatment. It is very important to control membrane fouling in the process of water treatment. This study was conducted to evaluate the efficiency of a pre-oxidation-coagulation flat ceramic membrane filtration process using different oxidant types and dosages in water treatment and membrane fouling control. The results showed that under suitable concentration conditions, the effect on membrane fouling control of a NaClO pre-oxidation combined with a coagulation/ceramic membrane system was better than that of an O3 system. The oxidation process changed the structure of pollutants, reduced the pollution load and enhanced the coagulation process in a pre-oxidation-coagulation system as well. The influence of the oxidant on the filtration system was related to its oxidizability and other characteristics. NaClO and O3 performed more efficiently than KMnO4. NaClO was more conducive to the removal of DOC, and O3 was more conducive to the removal of UV254.


2007 ◽  
Vol 7 (5-6) ◽  
pp. 43-51 ◽  
Author(s):  
Y. Matsui ◽  
T. Aizawa ◽  
M. Suzuki ◽  
Y. Kawase

The musty-earthy taste and odour caused by the presence of geosmin and other compounds in tap water are major causes of consumer complaints. Although ozonation and granular activated carbon (GAC) adsorption have been practiced in water-treatment plants to remove these compounds effectively, two major problems associated with the application of these processes – formation of stringently regulated bromate ions by ozonation and unhygienic invertebrate colonisation of GAC filters – are still to be resolved. This research advanced the process of adsorption by powdered activated carbon (PAC) by reducing its particle size to the submicrometre range for microfiltration pretreatment. Adsorption pretreatment by using this super (S)-PAC removed the geosmin with vastly greater efficiency than by normal PAC. Removal was attained in a much shorter contact time and at a much lower dosage. The S-PAC was also beneficial in attenuating the transmembrane pressure rises that occurred between both physical backwashings and chemical cleanings.


Author(s):  
Lili Song ◽  
Bo Zhu ◽  
Veeriah Jegatheesan ◽  
Stephen R. Gray ◽  
Mikel C. Duke ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 545 ◽  
Author(s):  
Rathmalgodage Thejani Nilusha ◽  
Tuo Wang ◽  
Hongyan Wang ◽  
Dawei Yu ◽  
Junya Zhang ◽  
...  

The cost-effective and stable operation of an anaerobic ceramic membrane bioreactor (AnCMBR) depends on operational strategies to minimize membrane fouling. A novel strategy for backwashing, filtration and relaxation was optimized for stable operation of a side stream tubular AnCMBR treating domestic wastewater at the ambient temperature. Two in situ backwashing schemes (once a day at 60 s/day, and twice a day at 60 s × 2/day) maintaining 55 min filtration and 5 min relaxation as a constant were compared. A flux level over 70% of the initial membrane flux was stabilized by in situ permeate backwashing irrespective of its frequency. The in situ backwashing by permeate once a day was better for energy saving, stable membrane filtration and less permeate consumption. Ex situ chemical cleaning after 60 days’ operation was carried out using pure water, sodium hypochlorite (NaOCl), and citric acid as the order. The dominant cake layer was effectively reduced by in situ backwashing, and the major organic foulants were fulvic acid-like substances and humic acid-like substances. Proteobacteria, Firmucutes, Epsilonbacteria and Bacteroides were the major microbes attached to the ceramic membrane fouling layer which were effectively removed by NaOCl.


Sign in / Sign up

Export Citation Format

Share Document