Second Generation Bioethanol Production from Residual Biomass of the Rice Processing Industry

Author(s):  
Luciana Luft ◽  
Juliana R. F. da Silva ◽  
Raquel C. Kuhn ◽  
Marcio A. Mazutti
2013 ◽  
Vol 6 (1) ◽  
pp. 168 ◽  
Author(s):  
Lorenzo Favaro ◽  
Marina Basaglia ◽  
Alberto Trento ◽  
Eugéne Van Rensburg ◽  
Maria García-Aparicio ◽  
...  

2021 ◽  
Vol 29 ◽  
pp. 13-19
Author(s):  
R. Y. Blume ◽  
O.V. Melnychuk ◽  
S.P. Ozheredov ◽  
D.B. Rakhmetov ◽  
Y.B. Blume

Aim. Main aim of this research was the evaluation of theoretical bioethanol yield (per ha) from hexaploid giant miscanthus (Miscanthus х giganteus) and further comparison with conventional triploid form as well as with other bioethanol crops. Methods. Several mathematic functions were determined that describe yearly yield dynamics and equations, which were used in calculations of theoretical bioethanol yield. Results. The theoretical bioethanol yield was evaluated for different hexaploid miscanthus lines. The most productive in terms of ethanol yield were lines 108 and 202, from which potential bioethanol yield was found to be higher than in control line (6451 L/ha) by 10.7 % and 14.2% respectively and can reach 7144 L/ha and 7684 L/ha. Conclusions. It was determined that the most productive lines of polyploid miscanthus (lines 108 and 202) are able to compete with other plant cellulosic feedstocks for second-generation bioethanol production in Ukraine. However, these lines show bioethanol productivity than sweet sorghum, in the case when sweet sorghum is processed for obtainment of both first- and second-generation bioethanol. Keywords: bioenergy crops, biofuels, giant miscanthus, Miscanthus, polyploidy, second-generation bioethanol.


2019 ◽  
Vol 126 ◽  
pp. 84-93 ◽  
Author(s):  
Neil Priharto ◽  
Frederik Ronsse ◽  
Wolter Prins ◽  
Idoia Hita ◽  
Peter J. Deuss ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4219
Author(s):  
Bruno Rafael de Almeida Moreira ◽  
Ronaldo da Silva Viana ◽  
Victor Hugo Cruz ◽  
Anderson Chagas Magalhães ◽  
Celso Tadao Miasaki ◽  
...  

Pellets refer to solid biofuels for heating and power. The pellet’s integrity is of great relevant to ensure safe and effective transportation and storage, and comfort to stakeholders. Several materials that are supportive, whether organic and inorganic, to pellets exist. However, no work in the literature is linking making hybrid non-wood pellets with addition of residual biomass from distillation of cellulosic bioethanol, and this requires further investigations. Figuring out how effective this challenging agro-industrial residue could be for reinforcing non-wood pellets is accordingly the scientific point of this study focusing on management of waste and valorization of biomass. The pilot-scale manufacturing of hybrid pellets consisted of systematically pressing sugarcane bagasse with the lignocellulosic reinforcement at the mass ratios of 3:1, 1:1, and 1:3 on an automatic pelletizer machine at 200 MPa and 125 °C. Elemental contents of C and H, durability, and energy density all increased significantly from 50.05 to 53.50%, 5.95 to 7.80%, 95.90 to 99.55%, and 28.20 to 31.20 MJ kg−1, respectively, with blending the starting material with the reinforcement at 1:3. Preliminary evidence of residual biomass from distillation of second-generation bioethanol capable of highly improving molecular flammable/combustible properties, mechanical stability, and fuel power of composite non-wood pellets exist.


Sign in / Sign up

Export Citation Format

Share Document