Direct Tangible Damage Classification and Exposure Analysis Using Satellite Images and Media Data

Author(s):  
Siquan Yang ◽  
Haixia He
2010 ◽  
Vol 26 (1) ◽  
pp. 87-109 ◽  
Author(s):  
ZhiQiang Chen ◽  
Tara C. Hutchinson

Recent research endeavors in civil engineering have attempted to apply remote sensing technology to urban damage assessment as an aid for post-disaster reconnaissance and recovery. In these attempts, urban structural damage is identified based on pre- and post-disaster satellite images with the use of a pattern classification approach. The result is usually presented in a damage map wherein categorical damage levels, such as “fully collapsed,” “partially collapsed,” or “intact,” are assigned to urban subregions or individual structures in images. However, a major limitation in past attempts is the use of deterministic approaches to classify damage levels. In general, these approaches are not able to capture the inherent uncertainties of structural damage and lack scalability when analyzing damage to built urban subregions of different sizes. To address this, a probabilistic classification framework by means of a multiclass classifier is proposed. By applying this probabilistic approach, classification of urban damage provides posterior probabilities, which can be used to quantify decision uncertainties and to obtain regional urban damage classification. Numerical experiments are conducted using satellite images acquired from a recent earthquake and a tsunami event, namely the 2003 Bam, Iran Earthquake, and the 2004 India Ocean Tsunami.


Metrologiya ◽  
2020 ◽  
pp. 15-37
Author(s):  
L. P. Bass ◽  
Yu. A. Plastinin ◽  
I. Yu. Skryabysheva

Use of the technical (computer) vision systems for Earth remote sensing is considered. An overview of software and hardware used in computer vision systems for processing satellite images is submitted. Algorithmic methods of the data processing with use of the trained neural network are described. Examples of the algorithmic processing of satellite images by means of artificial convolution neural networks are given. Ways of accuracy increase of satellite images recognition are defined. Practical applications of convolution neural networks onboard microsatellites for Earth remote sensing are presented.


Author(s):  
Marco, A. Márquez-Linares ◽  
Jonathan G. Escobar--Flores ◽  
Sarahi Sandoval- Espinosa ◽  
Gustavo Pérez-Verdín

Objective: to determine the distribution of D. viscosa in the vicinity of the Guadalupe Victoria Dam in Durango, Mexico, for the years 1990, 2010 and 2017.Design/Methodology/Approach: Landsat satellite images were processed in order to carry out supervised classifications using an artificial neural network. Images from the years 1990, 2010 and 2017 were used to estimate ground cover of D. viscosa, pastures, crops, shrubs, and oak forest. This data was used to calculate the expansion of D. viscosa in the study area.Results/Study Limitations/Implications: the supervised classification with the artificial neural network was optimal after 400 iterations, obtaining the best overall precision of 84.5 % for 2017. This contrasted with the year 1990, when overall accuracy was low at 45 % due to less training sites (fewer than 100) recorded for each of the land cover classes.Findings/Conclusions: in 1990, D. viscosa was found on only five hectares, while by 2017 it had increased to 147 hectares. If the disturbance caused by overgrazing continues, and based on the distribution of D. viscosa, it is likely that in a few years it will have the ability to invade half the study area, occupying agricultural, forested, and shrub areas


Author(s):  
Tiago NUNES ◽  
Miguel COUTINHO

After almost a century of several attempts to establish a coherent land registration system across the whole country, in 2017 the Portuguese government decided to try a new, digital native approach to the problem. Thus, a web-based platform was created, where property owners from 10 pilot municipalities could manually identify their lands’ properties using a map based on satellite images. After the first month of submissions, it became clear that at the current daily rate, it would take years to achieve the goal of 100% rural property identification across just the 10 municipalities. Field research during the first month after launch enabled us to understand landowners’ relationships with their land, map their struggles with the platform, and prototype ways to improve the whole service. Understanding that these improvements would still not be enough to get to the necessary daily rate, we designed, tested and validated an algorithm that allows us to identify a rural property shape and location without coordinates. Today, we are able to help both Government and landowners identify a rural property location with the click of a button.


2020 ◽  
Vol 14 (2) ◽  
pp. 140-159
Author(s):  
Anthony-Paul Cooper ◽  
Emmanuel Awuni Kolog ◽  
Erkki Sutinen

This article builds on previous research around the exploration of the content of church-related tweets. It does so by exploring whether the qualitative thematic coding of such tweets can, in part, be automated by the use of machine learning. It compares three supervised machine learning algorithms to understand how useful each algorithm is at a classification task, based on a dataset of human-coded church-related tweets. The study finds that one such algorithm, Naïve-Bayes, performs better than the other algorithms considered, returning Precision, Recall and F-measure values which each exceed an acceptable threshold of 70%. This has far-reaching consequences at a time where the high volume of social media data, in this case, Twitter data, means that the resource-intensity of manual coding approaches can act as a barrier to understanding how the online community interacts with, and talks about, church. The findings presented in this article offer a way forward for scholars of digital theology to better understand the content of online church discourse.


2012 ◽  
Vol E95.B (5) ◽  
pp. 1890-1893
Author(s):  
Wang LUO ◽  
Hongliang LI ◽  
Guanghui LIU ◽  
Guan GUI

2019 ◽  
Author(s):  
Xi Hu ◽  
Raghav Pant ◽  
Conrad Zorn ◽  
Weeho Lim ◽  
Elco Koks ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document