scholarly journals Protective Device Classification

2021 ◽  
pp. 1371-1374
2014 ◽  
Vol 8 (1) ◽  
pp. 404-411 ◽  
Author(s):  
Guo Rongyan ◽  
Zhang Honghui

As an important electrical safety protection device in low voltage distribution system, residual current protection device is to protect the insulation line leakage fault; the electric shock of the people plays an important role in fault. From the protection characteristics of residual current protective device to points, those can be divided into, residual current protection device for residual pulsating direct current and residual dc, according to the residual sinusoidal alternating current.


2018 ◽  
Vol 52 ◽  
pp. 00045
Author(s):  
Sri Fajar Ayu ◽  
Destanul Aulia

Prior research by authors on the use of pesticides and their impact on 75 vegetable farmers in Simpang Empat subdistrict, Karo district, North Sumatra showed that 60% of respondents applied pesticides in excess of the packaging instructions. Respondents were also found not to use a complete protective device. Almost 70% of respondents have mild toxicity complaints, and based on blood cholinesterase levels are also found most respondents have mild toxicity. Pesticide residue test results also found 0.728 residues of chlorpyrifos and 0.321 profenofos in vegetables produced in this area. This led to continued review by checking the technical efficiency in the use of pesticides. The method used is a quantitative method with the Data Envelope Analysis (DEA) approach to analyze technical efficiency of pesticide on each commodity. The population is the whole vegetable farmer who grew tomatoes, Chinese cabbage and cauliflower at the time of the study. The entire population is used to be a sample of 35 tomato and cauliflower farmers and 20 Chinese cabbage farmers. The results of the study indicate that the uses of pesticide as production inputs on tomato commodities, Chinese cabbage and cauliflower are not technically efficient. It is suggested to farmers to use pesticide input according to the rules, proper dosage, on target, on time, the right way so that pesticide used is technically efficient.


2021 ◽  
Vol 55 ◽  
pp. 767-773
Author(s):  
Kateryna Kravchenko ◽  
Pavol Šťastniak ◽  
Marián Moravčík ◽  
Ján Dižo ◽  
Miroslav Blatnický

Author(s):  
Xian Zhao ◽  
Rong Li ◽  
Yu Fan ◽  
Qingan Qiu

Failures of safety-critical systems may result in irretrievable economic losses and significant safety hazards, thus enhancing the reliability of safety-critical system is crucial. As applied widely in engineering fields, protective devices are commonly equipped for the systems operating in shock environment to reduce external damage, which has not been taken into consideration in existing literatures. This paper investigates the reliability of multi-state systems with competing failure patterns supported by a protective device. According to the system failure modes, state-based and shock number-based triggering mechanism of the protective device are developed. That is, the protective device is triggered once the system state or cumulative number of shocks exceeds corresponding critical thresholds respectively. After being triggered, the protective device can reduce the probability of damaging shocks for the system. The protective device fails when the number of consecutive valid shocks reaches a threshold. Based on the constructed model, a finite Markov chain imbedding approach is employed to derive reliability indices including distribution functions of system lifetime and residual lifetime, together with expected operating time of the protective device. Moreover, two age-based replacement policies together with a condition-based replacement policy are developed to accommodate different maintenance scenarios and corresponding optimal solutions are acquired. Numerical illustrations based on the application of cooling systems in engines are presented to validate the results.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2160
Author(s):  
Arthur K. Barnes ◽  
Jose E. Tabarez ◽  
Adam Mate ◽  
Russell W. Bent

Protecting inverter-interfaced microgrids is challenging as conventional time-overcurrent protection becomes unusable due to the lack of fault current. There is a great need for novel protective relaying methods that enable the application of protection coordination on microgrids, thereby allowing for microgrids with larger areas and numbers of loads while not compromising reliable power delivery. Tools for modeling and analyzing such microgrids under fault conditions are necessary in order to help design such protective relaying and operate microgrids in a configuration that can be protected, though there is currently a lack of tools applicable to inverter-interfaced microgrids. This paper introduces the concept of applying an optimization problem formulation to the topic of inverter-interfaced microgrid fault modeling, and discusses how it can be employed both for simulating short-circuits and as a set of constraints for optimal microgrid operation to ensure protective device coordination.


Author(s):  
Biswadeep Chakraborty ◽  
Dinil Mon Divakaran ◽  
Ido Nevat ◽  
Gareth W. Peters ◽  
Mohan Gurusamy

2018 ◽  
Vol 224 ◽  
pp. 02061
Author(s):  
Irina Troyanovskaya ◽  
Anton Kalugin

According to the safety requirements, all protective devices of tractor units are subject to obligatory certification. One of the main means of protecting the operator during overturning is ROPS system. In accordance with GOST (National State Standard), a performance check of ROPS protective structures is carried out on basis of full-scale tests. The purpose of the presented study is to develop the experimental procedure and to obtain the performance check result of ROPS protective device of the tractor unit’s cabin using B10 bulldozer manufactured by the Chelyabinsk Tractor Plant as an example. The tests were carried out at the Ural Test Center NATI. For this purpose, a special bedplate was used, allowing to test the protective cabins of tractors with the total mass of up to 110 tons. The hydraulic system of the bedplate allowed to carry out the process of lateral loading of ROPS step by step, where each step corresponded to the 10 mm structure deformation. The applied load and structure deformation were recorded at each step. The energy accumulated by the structure was calculated as the area under the stress-strain curve. The energy U = 40867 J, which was required according to GOST, was accumulated during lateral deformation Δ = 270 mm. The force constituted Fy = 243 kN. After removing the lateral load, the structure was subjected to the vertical static and longitudinal loading. During the whole experiment of ROPS protective device, repairs, deformation corrections and adjustments were not allowed. The test results of ROPS structure of B10 bulldozer cabin showed compliance with the GOST safety requirements. During ROPS deformation, penetration of the protective structure elements into the driver’s limited zone was not observed.


Sign in / Sign up

Export Citation Format

Share Document