optimization problem formulation
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)



Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2160
Author(s):  
Arthur K. Barnes ◽  
Jose E. Tabarez ◽  
Adam Mate ◽  
Russell W. Bent

Protecting inverter-interfaced microgrids is challenging as conventional time-overcurrent protection becomes unusable due to the lack of fault current. There is a great need for novel protective relaying methods that enable the application of protection coordination on microgrids, thereby allowing for microgrids with larger areas and numbers of loads while not compromising reliable power delivery. Tools for modeling and analyzing such microgrids under fault conditions are necessary in order to help design such protective relaying and operate microgrids in a configuration that can be protected, though there is currently a lack of tools applicable to inverter-interfaced microgrids. This paper introduces the concept of applying an optimization problem formulation to the topic of inverter-interfaced microgrid fault modeling, and discusses how it can be employed both for simulating short-circuits and as a set of constraints for optimal microgrid operation to ensure protective device coordination.



2020 ◽  
pp. 107754632095674
Author(s):  
Haitao Liao ◽  
Mengyu Li ◽  
Ruxin Gao

A continuation method for bifurcation tracking is presented based on the proposed optimization problem formulation which is designed to locate the bifurcation periodic solution. The bifurcation detection problem is formulated as a constrained optimization problem. The nonlinear constraints of the optimization problem are imposed on the shooting function and bifurcation conditions derived from the Floquet theory whereas the objective function associated with the pseudo-arclength correlation equation is devised to solution continuation. The proposed optimization formulation is integrated with the prediction–correction strategy to achieve bifurcation tracking. Two numerical examples about the Jeffcott rotor and the nonlinear tuned vibration absorber are illustrated to validate the effectiveness of the proposed methodology. Numerical results have demonstrated that the proposed method offers a convenient scheme to follow bifurcation periodic solution.



Aerospace ◽  
2020 ◽  
Vol 7 (8) ◽  
pp. 110 ◽  
Author(s):  
Lydia Lawand ◽  
Massimo Panarotto ◽  
Petter Andersson ◽  
Ola Isaksson ◽  
Michael Kokkolaras

Additive manufacturing (AM) is being used increasingly for repair and remanufacturing of aeroengine components. This enables the consideration of a design margin approach to satisfy changing requirements, in which component lifespan can be optimized for different lifecycle scenarios. This paradigm requires lifecycle cost (LCC) modeling; however, the LCC models available in the literature consider mostly the manufacturing of a component, not its repair or remanufacturing. There is thus a need for an LCC model that can consider AM for repair/remanufacturing to quantify corresponding costs and benefits. This paper presents a dynamic LCC model that estimates cumulative costs over the in-service phase and a nested design optimization problem formulation that determines the optimal component lifespan range to minimize overall cost while maximizing performance. The developed methodology is demonstrated by means of an aeroengine turbine rear structure.



2020 ◽  
Vol 21 (1) ◽  
pp. 73-84
Author(s):  
K Jairam Naik ◽  
D Hanumanth Naik

Cloud computing helps in providing the applications with a few number of resources that are used to unload the tasks. But there are certain applications like coordinated lane change assistance which are helpful in cars that connects to internet has strict time constraints, and it may not be possible to get the job done just by unloading the tasks to the cloud. Fog computing helps in reducing the latency i.e the computation is now done in local fog servers instead of remote datacentres and these fog servers are connected to the nearby distance to clients. To achieve better timing performance in fog computing load balancing in these fog servers is to be performed in an efficient manner.The challenges in the proposed application includes the number of tasks are high, client mobility and heterogeneous nature of fog servers. We use mobility patterns of connected cars and load balancing is done periodically among fog servers. The task model presented here in this paper solves scheduling problem and this is done at the server level and not on the device level. And at last, we present an optimization problem formulation for balancing the load and for reducing the misses in deadline, also the time required for running the task in these cars will be minimized with the help of fog computing. It also performs better than somecommon algorithms such as active monitoring, weighted round robin and throttled load balancer.



2017 ◽  
Vol 20 (6) ◽  
pp. 512-528
Author(s):  
William A. Crossley ◽  
Siyao Luan ◽  
James T. Allison ◽  
Deborah L. Thurston


2017 ◽  
Vol 8 (4) ◽  
Author(s):  
I. Slobodyan ◽  
V. Lozhechny`kov ◽  
A. Stopakevy`ch

The paper formulated optimization problem formulation production of carbon products. The analysis of technical and economic parameters that can be used to optimize the production of carbonaceous products had been done by the author. To evaluate the efficiency of the energy-intensive production uses several technical and economic indicators. In particular, the specific cost, productivity, income and profitability of production. Based on a detailed analysis had been formulated optimality criterion that takes into account the technological components of profitability. The components in detail the criteria and the proposed method of calculating non-trivial, one of them - the production cost of each product. When solving the optimization problem of technological modes of production into account constraints on the variables are optimized. Thus, restrictions may be expressed on the number of each product produced. Have been formulated the method of calculating the cost per unit of product. Attention is paid to the quality indices of finished products as an additional constraint in the optimization problem. As a result have been formulated the general problem of optimizing the production of carbon products, which includes the optimality criterion and restrictions.



2017 ◽  
Vol 18 (1) ◽  
pp. 70-78
Author(s):  
Andrejs Zvaigzne ◽  
Oleksandr Bondarenko

Abstract The effectiveness assessment of specialized ships was discussed. Three groups of criteria such as financially-economic, technical and operational were analyzed. As an integrated criterion, “cost-effectiveness” ratio was proposed to be used. Selection of the optimum design characteristics of specialized ships were offered to carried out by solving the optimization problem. The description of the optimization problem formulation and the method of its solution were presented.



Sign in / Sign up

Export Citation Format

Share Document