Large‐scale Wireless Spectrum Monitoring

2020 ◽  
pp. 321-339 ◽  
Author(s):  
Sreeraj Rajendran ◽  
Sofie Pollin
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Linbo Zhai ◽  
Hua Wang

Cognitive radio technology allows unlicensed users to utilize licensed wireless spectrum if the wireless spectrum is unused by licensed users. Therefore, spectrum sensing should be carried out before unlicensed users access the wireless spectrum. Since mobile terminals such as smartphones are more and more intelligent, they can sense the wireless spectrum. The method that spectrum sensing task is assigned to mobile intelligent terminals is called crowdsourcing. For a large-scale region, we propose the crowdsourcing paradigm to assign mobile users the spectrum sensing task. The sensing task assignment is influenced by some factors including remaining energy, locations, and costs of mobile terminals. Considering these constraints, we design a precise sensing effect function with a local constraint and aim to maximize this sensing effect to address crowdsensing task assignment. The problem of crowdsensing task assignment is difficult to solve since we prove that it is NP-hard. We design an optimal algorithm based on particle swarm optimization to solve this problem. Simulation results show our algorithm achieves higher performance than the other algorithms.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2414
Author(s):  
Ebtesam Almazrouei ◽  
Gabriele Gianini ◽  
Nawaf Almoosa ◽  
Ernesto Damiani

This paper proposes a novel Deep Learning (DL)-based approach for classifying the radio-access technology (RAT) of wireless emitters. The approach improves computational efficiency and accuracy under harsh channel conditions with respect to existing approaches. Intelligent spectrum monitoring is a crucial enabler for emerging wireless access environments that supports sharing of (and dynamic access to) spectral resources between multiple RATs and user classes. Emitter classification enables monitoring the varying patterns of spectral occupancy across RATs, which is instrumental in optimizing spectral utilization and interference management and supporting efficient enforcement of access regulations. Existing emitter classification approaches successfully leverage convolutional neural networks (CNNs) to recognize RAT visual features in spectrograms and other time-frequency representations; however, the corresponding classification accuracy degrades severely under harsh propagation conditions, and the computational cost of CNNs may limit their adoption in resource-constrained network edge scenarios. In this work, we propose a novel emitter classification solution consisting of a Denoising Autoencoder (DAE), which feeds a CNN classifier with lower dimensionality, denoised representations of channel-corrupted spectrograms. We demonstrate—using a standard-compliant simulation of various RATs including LTE and four latest Wi-Fi standards—that in harsh channel conditions including non-line-of-sight, large scale fading, and mobility-induced Doppler shifts, our proposed solution outperforms a wide range of standalone CNNs and other machine learning models while requiring significantly less computational resources. The maximum achieved accuracy of the emitter classifier is 100%, and the average accuracy is 91% across all the propagation conditions.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


Sign in / Sign up

Export Citation Format

Share Document