Development of a Multi‐objective Salp Swarm Algorithm for Benchmark Functions and Real‐world Problems

Author(s):  
Sushant P. Mhatugade ◽  
Ganesh M. Kakandikar ◽  
Omkar K. Kulkarni ◽  
Vilas M. Nandedkar
Author(s):  
Hongliang Zhang ◽  
Tong Liu ◽  
Xiaojia Ye ◽  
Ali Asghar Heidari ◽  
Guoxi Liang ◽  
...  

2014 ◽  
Vol 29 ◽  
pp. 1904-1914 ◽  
Author(s):  
Marcus Randall ◽  
Andrew Lewis ◽  
Jan Hettenhausen ◽  
Timoleon Kipouros

2020 ◽  
Vol 147 ◽  
pp. 106628 ◽  
Author(s):  
Ibrahim Aljarah ◽  
Maria Habib ◽  
Hossam Faris ◽  
Nailah Al-Madi ◽  
Ali Asghar Heidari ◽  
...  

2019 ◽  
Vol 22 (2) ◽  
pp. 402-422 ◽  
Author(s):  
Matthew B. Johns ◽  
Edward Keedwell ◽  
Dragan Savic

Abstract Water system design problems are complex and difficult to optimise. It has been demonstrated that involving engineering expertise is required to tackle real-world problems. This paper presents two engineering inspired hybrid evolutionary algorithms (EAs) for the multi-objective design of water distribution networks. The heuristics are developed from traditional design approaches of practicing engineers and integrated into the mutation operator of a multi-objective EA. The first engineering inspired heuristic is designed to identify hydraulic bottlenecks within the network and eliminate them with a view to speeding up the algorithm's search to the feasible solution space. The second heuristic is based on the notion that pipe diameters smoothly transition from large, at the source, to small at the extremities of the network. The performance of the engineering inspired hybrid EAs is compared with Non-Dominated Sorting Genetic Algorithm II and assessed on three networks of varying complexity, two benchmarks and one real-world network. The experiments presented in this paper demonstrate that the incorporation of engineering expertise can improve EA performance, often producing superior solutions both in terms of mathematical optimality and also engineering feasibility.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sui Peng ◽  
Xianfu Gong ◽  
Xinmiao Liu ◽  
Xun Lu ◽  
Xiaomeng Ai

Battery energy storage systems (BESSs) are a key technology to accommodate the uncertainties of RESs and load demand. However, BESSs at an improper location and size may result in no-reasonable investment costs and even unsafe system operation. To realize the economic and reliable operation of BESSs in the distribution network (DN), this paper establishes a multi-objective optimization model for the optimal locating and sizing of BESSs, which aims at minimizing the total investment cost of BESSs, the power loss cost of DN and the power fluctuation of the grid connection point. Firstly, a multi-objective memetic salp swarm algorithm (MMSSA) was designed to derive a set of uniformly distributed non-dominated Pareto solutions of the BESSs allocation scheme, and accumulate them in a retention called a repository. Next, the best compromised Pareto solution was objectively selected from the repository via the ideal-point decision method (IPDM), where the best trade-off among different objectives was achieved. Finally, the effectiveness of the proposed algorithm was verified based on the extended IEEE 33-bus test system. Simulation results demonstrate that the proposed method not only effectively improves the economy of BESSs investment but also significantly reduces power loss and power fluctuation.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 116
Author(s):  
Junhua Ku ◽  
Fei Ming ◽  
Wenyin Gong

In the real-world, symmetry or asymmetry widely exists in various problems. Some of them can be formulated as constrained multi-objective optimization problems (CMOPs). During the past few years, handling CMOPs by evolutionary algorithms has become more popular. Lots of constrained multi-objective optimization evolutionary algorithms (CMOEAs) have been proposed. Whereas different CMOEAs may be more suitable for different CMOPs, it is difficult to choose the best one for a CMOP at hand. In this paper, we propose an ensemble framework of CMOEAs that aims to achieve better versatility on handling diverse CMOPs. In the proposed framework, the hypervolume indicator is used to evaluate the performance of CMOEAs, and a decreasing mechanism is devised to delete the poorly performed CMOEAs and to gradually determine the most suitable CMOEA. A new CMOEA, namely ECMOEA, is developed based on the framework and three state-of-the-art CMOEAs. Experimental results on five benchmarks with totally 52 instances demonstrate the effectiveness of our approach. In addition, the superiority of ECMOEA is verified through comparisons to seven state-of-the-art CMOEAs. Moreover, the effectiveness of ECMOEA on the real-world problems is also evaluated for eight instances.


Sign in / Sign up

Export Citation Format

Share Document