Electrokinetic Remediation of Dredged Contaminated Sediments

Author(s):  
Kristine B. Pedersen ◽  
Ahmed Benamar ◽  
Mohamed T. Ammami ◽  
Florence Portet‐Koltalo ◽  
Gunvor M. Kirkelund
2017 ◽  
Vol 89 (7) ◽  
pp. 663-671 ◽  
Author(s):  
Natasa S. Varga ◽  
Bozo D. Dalmacija ◽  
Miljana Dj. Prica ◽  
Djurdja V. Kerkez ◽  
Milena Dj. Becelic-Tomin ◽  
...  

2012 ◽  
Vol 449 ◽  
pp. 27-40 ◽  
Author(s):  
J Näslund ◽  
GS Samuelsson ◽  
JS Gunnarsson ◽  
FJA Nascimento ◽  
HC Nilsson ◽  
...  

2002 ◽  
Author(s):  
Marilyn R. Buchholtz ten Brink ◽  
F.T. Manheim ◽  
E.L. Mecray ◽  
M.E. Hastings ◽  
J.M. Currence ◽  
...  

1999 ◽  
Vol 39 (10-11) ◽  
pp. 173-176 ◽  
Author(s):  
Liesl Hill ◽  
Sebastian Jooste

With the increasing focus on environmental issues, the objective of this study is to evaluate the potential impact of contaminated sediments of the Blesbok Spruit near Witbank - which receives acid mine drainage (AMD) inter alia - on biota. Direct transfer of chemicals from sediments to organisms is considered to be a major route of exposure for many species, and therefore focusing attention on sediment contamination and highlighting the fact that sediments are an important resource. Acute toxicity tests were performed on Daphnia pulex using both extracted sediment interstitial water and surface water. Chemical analyses were also performed on the sediment, interstitial water and surface water samples. The toxicity results suggest that metal toxicity adds significantly to the toxicity of the stream water which is enhanced by the effect of pH. The pH of the stream and interstitial water was consistently below 4.5.


Author(s):  
S.M.P.A Koliyabandara ◽  
Chamika Siriwardhana ◽  
Sakuni M. De Silva ◽  
Janitha Walpita ◽  
Asitha T. Cooray

2021 ◽  
Vol 11 (4) ◽  
pp. 1799
Author(s):  
Claudio Cameselle ◽  
Susana Gouveia ◽  
Adrian Cabo

The electrokinetic remediation of an agricultural soil contaminated with heavy metals was studied using organic acids as facilitating agents. The unenhanced electrokinetic treatment using deionized water as processing fluid did not show any significant mobilization and removal of heavy metals due to the low solubilization of metals and precipitation at high pH conditions close to the cathode. EDTA and citric acid 0.1 M were used as facilitating agents to favor the dissolution and transportation of metals. The organic acids were added to the catholyte and penetrated into the soil specimen by electromigration. EDTA formed negatively charged complexes. Citric acid formed neutral metal complexes in the soil pH conditions (pH = 2–4). Citric acid was much more effective in the dissolution and transportation out of the soil specimen of complexed metals. In order to enhance the removal of metals, the concentration of citric acid was increased up to 0.5 M, resulting in the removal of 78.7% of Cd, 78.6% of Co, 72.5% of Cu, 73.3% of Zn, 11.8% of Cr and 9.8% of Pb.


Sign in / Sign up

Export Citation Format

Share Document