Ecosystem effects of materials proposed for thin‑layer capping of contaminated sediments

2012 ◽  
Vol 449 ◽  
pp. 27-40 ◽  
Author(s):  
J Näslund ◽  
GS Samuelsson ◽  
JS Gunnarsson ◽  
FJA Nascimento ◽  
HC Nilsson ◽  
...  
2012 ◽  
Vol 46 (21) ◽  
pp. 12030-12037 ◽  
Author(s):  
Gerard Cornelissen ◽  
Katja Amstaetter ◽  
Audun Hauge ◽  
Morten Schaanning ◽  
Bjørnar Beylich ◽  
...  

Author(s):  
William J. Baxter

In this form of electron microscopy, photoelectrons emitted from a metal by ultraviolet radiation are accelerated and imaged onto a fluorescent screen by conventional electron optics. image contrast is determined by spatial variations in the intensity of the photoemission. The dominant source of contrast is due to changes in the photoelectric work function, between surfaces of different crystalline orientation, or different chemical composition. Topographical variations produce a relatively weak contrast due to shadowing and edge effects.Since the photoelectrons originate from the surface layers (e.g. ∼5-10 nm for metals), photoelectron microscopy is surface sensitive. Thus to see the microstructure of a metal the thin layer (∼3 nm) of surface oxide must be removed, either by ion bombardment or by thermal decomposition in the vacuum of the microscope.


Author(s):  
Linda Sicko-Goad

Although the use of electron microscopy and its varied methodologies is not usually associated with ecological studies, the types of species specific information that can be generated by these techniques are often quite useful in predicting long-term ecosystem effects. The utility of these techniques is especially apparent when one considers both the size range of particles found in the aquatic environment and the complexity of the phytoplankton assemblages.The size range and character of organisms found in the aquatic environment are dependent upon a variety of physical parameters that include sampling depth, location, and time of year. In the winter months, all the Laurentian Great Lakes are uniformly mixed and homothermous in the range of 1.1 to 1.7°C. During this time phytoplankton productivity is quite low.


Sign in / Sign up

Export Citation Format

Share Document