Fundamental Units and Constants in Metrology

2021 ◽  
pp. 1-12
Keyword(s):  
2014 ◽  
Vol 540 ◽  
pp. 352-355
Author(s):  
Sui Yuan Zhang ◽  
Rui Wang ◽  
Xian Qiao Chen ◽  
Ze Wu Jiang ◽  
Xiang Cai

Cells are fundamental units of life, and the key point in the field of biomaterial. Biological cells are always with high density, small nucleus and much impurities. Based on the technology of image processing, we propose a new method to count cells on the image of microscopic cells with high level of recognition. To precisely count the number, our method includes edge detecting and marking, efficient usage of three channel information of enhanced nucleus, binaryzation of dynamic threshold in separated areas and finally denoising. The experiment shows that the method is precise and quickly-reacted, moreover it can effectively rule out the impact of impurities. With little adjustment, it can apply to some other fields, not only decrease the labor involved, but the budget as well.


Author(s):  
H. J. Godwin

The determination of a pair of fundamental units in a totally real cubic field involves two operations—finding a pair of independent units (i.e. such that neither is a power of the other) and from these a pair of fundamental units (i.e. a pair ε1; ε2 such that every unit of the field is of the form with rational integral m, n). The first operation may be accomplished by exploring regions of the integral lattice in which two conjugates are small or else by factorizing small primes and comparing different factorizations—a trial-and-error method, but often a quick one. The second operation is accomplished by obtaining inequalities which must be satisfied by a fundamental unit and its conjugates and finding whether or not a unit exists satisfying these inequalities. Recently Billevitch ((1), (2)) has given a method, of the nature of an extension of the first method mentioned above, which involves less work on the second operation but no less on the first.


Author(s):  
Davide Carnelli ◽  
Haimin Yao ◽  
Ming Dao ◽  
Pasquale Vena ◽  
Roberto Contro ◽  
...  

Secondary osteons, the fundamental units of cortical bone, consist of cylindrical lamellar composites composed of mineralized collagen fibrils. Due to its lamellar structure, a multiscale knowledge of the mechanical properties of cortical bone is required to understand the biomechanical function of the tissue. In this light, nanoindentation tests were performed along the axial and transverse directions following a radial path from the Haversian canal to the osteonal edges. Different length scales are explored by means of indentations at different maximum penetration depths. Indentation moduli and hardness data were then interpreted in the context of the known microstructure. Results suggest that secondary osteons hierarchical structure is responsible for an observed length scale effect, homogenization phenomena and anisotropy of mechanical properties.


2013 ◽  
pp. 1-38
Author(s):  
Bruce Alberts ◽  
Dennis Bray ◽  
Alexander Johnson ◽  
Julian Lewis ◽  
Martin Raff ◽  
...  
Keyword(s):  

2021 ◽  
Vol 118 (33) ◽  
pp. e2023588118
Author(s):  
Kamil K. Kolincio ◽  
Max Hirschberger ◽  
Jan Masell ◽  
Shang Gao ◽  
Akiko Kikkawa ◽  
...  

The long-range order of noncoplanar magnetic textures with scalar spin chirality (SSC) can couple to conduction electrons to produce an additional (termed geometrical or topological) Hall effect. One such example is the Hall effect in the skyrmion lattice state with quantized SSC. An alternative route to attain a finite SSC is via the spin canting caused by thermal fluctuations in the vicinity of the ferromagnetic ordering transition. Here, we report that for a highly conducting ferromagnet with a two-dimensional array of spin trimers, the thermally generated SSC can give rise to a gigantic geometrical Hall conductivity even larger than the intrinsic anomalous Hall conductivity of the ground state. We also demonstrate that the SSC induced by thermal fluctuations leads to a strong response in the Nernst effect. A comparison of the sign and magnitude of fluctuation–Nernst and Hall responses in fundamental units indicates the need for a momentum–space picture to model these thermally induced signals.


Philologia ◽  
2021 ◽  
Author(s):  
Svetlana Calaras ◽  

There are various interpretations of the fundamental notions used in the study of terminology. This article is a comparative study of their definitions, conducted in the process of establishing benchmarks in the study of editorial-printing terminology. It presents a research of the theoretical foundations of terminology, a study of various interpretations of linguistic meanings of key notions of terminology: „notion”, „concept” and „term”. One of the fundamental units of terminology is the „notion”, which is characterized as an abstract object of knowledge. Another fundamental unit, the „concept”, represents classes of objects of knowledge, of perceptible phenomena. Concepts are called abstractions, mental constructions or units of thought that ensure the connection between objects and their definitions. They have an essential role in human knowledge, communication not being possible if we do not have a codification of concepts in linguistic signs (terms). The concepts ensure the connection between the objects and the designations that correspond to them. And the „term” is the material form, expressed through linguistic means, of a notion specialized in a certain field of knowledge.


Sign in / Sign up

Export Citation Format

Share Document