Parameter Estimation of Solar Cells: A Multi‐Objective Approach

Author(s):  
Saumyadip Hazra ◽  
Souvik Ganguli
2021 ◽  
Author(s):  
Varun Ojha ◽  
Giorgio Jansen ◽  
Andrea Patanè ◽  
Antonino La Magna ◽  
Vittorio Romano ◽  
...  

AbstractWe propose a two-stage multi-objective optimization framework for full scheme solar cell structure design and characterization, cost minimization and quantum efficiency maximization. We evaluated structures of 15 different cell designs simulated by varying material types and photodiode doping strategies. At first, non-dominated sorting genetic algorithm II (NSGA-II) produced Pareto-optimal-solutions sets for respective cell designs. Then, on investigating quantum efficiencies of all cell designs produced by NSGA-II, we applied a new multi-objective optimization algorithm II (OptIA-II) to discover the Pareto fronts of select (three) best cell designs. Our designed OptIA-II algorithm improved the quantum efficiencies of all select cell designs and reduced their fabrication costs. We observed that the cell design comprising an optimally doped zinc-oxide-based transparent conductive oxide (TCO) layer and rough silver back reflector (BR) offered a quantum efficiency ($$Q_e$$ Q e ) of 0.6031. Overall, this paper provides a full characterization of cell structure designs. It derives relationship between quantum efficiency, $$Q_e$$ Q e of a cell with its TCO layer’s doping methods and TCO and BR layer’s material types. Our solar cells design characterization enables us to perform a cost-benefit analysis of solar cells usage in real-world applications.


2017 ◽  
Vol 62 ◽  
pp. 373-383 ◽  
Author(s):  
Andrea Patanè ◽  
Andrea Santoro ◽  
Piero Conca ◽  
Giovanni Carapezza ◽  
Antonino La Magna ◽  
...  

2015 ◽  
Vol 72 (2) ◽  
Author(s):  
Liyana Ramli ◽  
Yahaya Md. Sam ◽  
Zaharuddin Mohamed ◽  
M. Khairi Aripin ◽  
M. Fahezal Ismail

The purpose of controlling the vehicle handling is to ensure that the vehicle is in a safe condition and following its desire path. Vehicle yaw rate is controlled in order to achieve a good vehicle handling. In this paper, the optimal Composite Nonlinear Feedback (CNF) control technique is proposed for an Active Front Steering (AFS) system for improving the vehicle yaw rate response. The model used in order to validate the performance of controller is nonlinear vehicle model with 7 degree-of-freedom (DOF) and a bicycle model is implemented for the purpose of designing the controller. In designing an optimal CNF controller, the parameter estimation of linear and nonlinear gain becomes very important to produce the best output response. An intelligent algorithm is designed to minimize the time consumed to get the best parameter. To design an optimal method, Multi Objective Particle Swarm Optimization (MOPSO) is utilized to optimize the CNF controller performance. As a result, transient performance of the yaw rate has improved with the increased speed of in tracking and searching of the best optimized parameter estimation for the linear and the nonlinear gain of CNF controller.  


2012 ◽  
Vol 16 (10) ◽  
pp. 3579-3606 ◽  
Author(s):  
T. Krauße ◽  
J. Cullmann ◽  
P. Saile ◽  
G. H. Schmitz

Abstract. Process-oriented rainfall-runoff models are designed to approximate the complex hydrologic processes within a specific catchment and in particular to simulate the discharge at the catchment outlet. Most of these models exhibit a high degree of complexity and require the determination of various parameters by calibration. Recently, automatic calibration methods became popular in order to identify parameter vectors with high corresponding model performance. The model performance is often assessed by a purpose-oriented objective function. Practical experience suggests that in many situations one single objective function cannot adequately describe the model's ability to represent any aspect of the catchment's behaviour. This is regardless of whether the objective is aggregated of several criteria that measure different (possibly opposite) aspects of the system behaviour. One strategy to circumvent this problem is to define multiple objective functions and to apply a multi-objective optimisation algorithm to identify the set of Pareto optimal or non-dominated solutions. Nonetheless, there is a major disadvantage of automatic calibration procedures that understand the problem of model calibration just as the solution of an optimisation problem: due to the complex-shaped response surface, the estimated solution of the optimisation problem can result in different near-optimum parameter vectors that can lead to a very different performance on the validation data. Bárdossy and Singh (2008) studied this problem for single-objective calibration problems using the example of hydrological models and proposed a geometrical sampling approach called Robust Parameter Estimation (ROPE). This approach applies the concept of data depth in order to overcome the shortcomings of automatic calibration procedures and find a set of robust parameter vectors. Recent studies confirmed the effectivity of this method. However, all ROPE approaches published so far just identify robust model parameter vectors with respect to one single objective. The consideration of multiple objectives is just possible by aggregation. In this paper, we present an approach that combines the principles of multi-objective optimisation and depth-based sampling, entitled Multi-Objective Robust Parameter Estimation (MOROPE). It applies a multi-objective optimisation algorithm in order to identify non-dominated robust model parameter vectors. Subsequently, it samples parameter vectors with high data depth using a further developed sampling algorithm presented in Krauße and Cullmann (2012a). We study the effectivity of the proposed method using synthetical test functions and for the calibration of a distributed hydrologic model with focus on flood events in a small, pre-alpine, and fast responding catchment in Switzerland.


2020 ◽  
Vol 13 (1) ◽  
pp. 317-317
Author(s):  
Rui Sun ◽  
Jie Guo ◽  
Qiang Wu ◽  
Zhuohan Zhang ◽  
Wenyan Yang ◽  
...  

Correction for ‘A multi-objective optimization-based layer-by-layer blade-coating approach for organic solar cells: rational control of vertical stratification for high performance’ by Rui Sun et al., Energy Environ. Sci., 2019, 12, 3118–3132.


Sign in / Sign up

Export Citation Format

Share Document