Offshore Sedimentary Basins at the Southern End of the Alpine Fault, New Zealand

Author(s):  
R. J. Norris ◽  
R. M. Carter
2005 ◽  
Vol 117 (3) ◽  
pp. 411 ◽  
Author(s):  
Philip M. Barnes ◽  
Rupert Sutherland ◽  
Jean Delteil

2021 ◽  
Author(s):  
◽  
Louise Jane Christie

<p>Decompacted sedimentary data from 33 New Zealand exploration wells is used to investigate basin evolution and tectonics from around New Zealand. This analysis is directed to both a comparison of basin behaviour and a search for common subsidence signatures. Common to almost all New Zealand basin subsidence curves is a sedimentary signature associated with rifting of the Gondwana super-continent (80-65 Ma). In the Great South Basin a second rifting event is inferred at 51 [plus or minus] 2 Ma, illustrated by a rapid increase in subsidence rates (with a maximum rate of 190 m.Myr-1 at Pakaha-1). Coinciding with the cessation of Tasman Sea rifting ([approximately] 53 Ma), and with the onset of rifting in the Emerald Basin ([approximately] 50 Ma), it is assumed that the event is related to the tectonic plate reorganization. An increase in sedimentation is noted at [approximately] 20 Ma in most South Island wells. Convergence on the Alpine Fault, leading to increased erosion is cited as a mechanism for this period of basin growth, consistent with the Cande and Stock (2004) model of plate motions. A second increase in sedimentation occurs at [approximately] 6 Ma in almost all wells around New Zealand. Climate-driven erosion resulting in isostatic uplift is thought to contribute to this event. Hiatuses in the sedimentary record for the Canterbury, Great South and Western Southland Basins during the late Oligocene are interpreted as the Marshall Paraconformity. It appears that the break in sedimentation located within a regional transgressional mega-sequence was caused by mid Oligocene glacio-eustatic fall and related oceanic current processes. Loading by the Northland Allochthon, in conjunction with paleobathymetry and subsidence data, is used to demonstrate the mechanical properties of the lithosphere. A lithospheric rigidity of 1.5 x [10 to the power of 22] Nm is estimated, with an elastic thickness of 12 km. Considerably lower than elastic thickness values previously calculated for the Plio-Pleistocene loading of the Taranaki Platform. It is noted that the Northland value represents a younger, hotter crust at the time of load emplacment. With the exception of the central Taranaki and Great South Basins, stretching factors ([Beta]) for the sedimentary basins surrounding New Zealand are below 2. This suggests crustal thickness prior to rifting was between 35 and 50 km, consistent with data from conjugate margins of Australia and Antarctica. An increase in water depth in the Taranaki Basin at 25 [plus or minus] 3 Ma is confirmed by this study. This coincides with a similar signature on the West Coast of the South Island at 26 [plus or minus] 2 Ma. It is suggested that a mantle flow caused by the initiation of the subduction zone at [approximately] 25 Ma extends over a broader region (>750 km) than previously thought.</p>


2021 ◽  
Author(s):  
◽  
Louise Jane Christie

<p>Decompacted sedimentary data from 33 New Zealand exploration wells is used to investigate basin evolution and tectonics from around New Zealand. This analysis is directed to both a comparison of basin behaviour and a search for common subsidence signatures. Common to almost all New Zealand basin subsidence curves is a sedimentary signature associated with rifting of the Gondwana super-continent (80-65 Ma). In the Great South Basin a second rifting event is inferred at 51 [plus or minus] 2 Ma, illustrated by a rapid increase in subsidence rates (with a maximum rate of 190 m.Myr-1 at Pakaha-1). Coinciding with the cessation of Tasman Sea rifting ([approximately] 53 Ma), and with the onset of rifting in the Emerald Basin ([approximately] 50 Ma), it is assumed that the event is related to the tectonic plate reorganization. An increase in sedimentation is noted at [approximately] 20 Ma in most South Island wells. Convergence on the Alpine Fault, leading to increased erosion is cited as a mechanism for this period of basin growth, consistent with the Cande and Stock (2004) model of plate motions. A second increase in sedimentation occurs at [approximately] 6 Ma in almost all wells around New Zealand. Climate-driven erosion resulting in isostatic uplift is thought to contribute to this event. Hiatuses in the sedimentary record for the Canterbury, Great South and Western Southland Basins during the late Oligocene are interpreted as the Marshall Paraconformity. It appears that the break in sedimentation located within a regional transgressional mega-sequence was caused by mid Oligocene glacio-eustatic fall and related oceanic current processes. Loading by the Northland Allochthon, in conjunction with paleobathymetry and subsidence data, is used to demonstrate the mechanical properties of the lithosphere. A lithospheric rigidity of 1.5 x [10 to the power of 22] Nm is estimated, with an elastic thickness of 12 km. Considerably lower than elastic thickness values previously calculated for the Plio-Pleistocene loading of the Taranaki Platform. It is noted that the Northland value represents a younger, hotter crust at the time of load emplacment. With the exception of the central Taranaki and Great South Basins, stretching factors ([Beta]) for the sedimentary basins surrounding New Zealand are below 2. This suggests crustal thickness prior to rifting was between 35 and 50 km, consistent with data from conjugate margins of Australia and Antarctica. An increase in water depth in the Taranaki Basin at 25 [plus or minus] 3 Ma is confirmed by this study. This coincides with a similar signature on the West Coast of the South Island at 26 [plus or minus] 2 Ma. It is suggested that a mantle flow caused by the initiation of the subduction zone at [approximately] 25 Ma extends over a broader region (>750 km) than previously thought.</p>


2013 ◽  
Vol 11 (4) ◽  
pp. 435-448 ◽  
Author(s):  
L.A. Konstantaki ◽  
S. Carpentier ◽  
F. Garofalo ◽  
P. Bergamo ◽  
L.V. Socco

2016 ◽  
Vol 445 ◽  
pp. 125-135 ◽  
Author(s):  
Catriona D. Menzies ◽  
Damon A.H. Teagle ◽  
Samuel Niedermann ◽  
Simon C. Cox ◽  
Dave Craw ◽  
...  

2021 ◽  
Author(s):  
Duna Roda-Boluda ◽  
Taylor Schildgen ◽  
Hella Wittmann-Oelze ◽  
Stefanie Tofelde ◽  
Aaron Bufe ◽  
...  

&lt;p&gt;The Southern Alps of New Zealand are the expression of the oblique convergence between the Pacific and Australian plates, which move at a relative velocity of nearly 40 mm/yr. This convergence is accommodated by the range-bounding Alpine Fault, with a strike-slip component of ~30-40 mm/yr, and a shortening component normal to the fault of ~8-10 mm/yr. While strike-slip rates seem to be fairly constant along the Alpine Fault, throw rates appear to vary considerably, and whether the locus of maximum exhumation is located near the fault, at the main drainage divide, or part-way between, is still debated. These uncertainties stem from very limited data characterizing vertical deformation rates along and across the Southern Alps. Thermochronology has constrained the Southern Alps exhumation history since the Miocene, but Quaternary exhumation is hard to resolve precisely due to the very high exhumation rates. Likewise, GPS surveys estimate a vertical uplift of ~5 mm/yr, but integrate only over ~10 yr timescales and are restricted to one transect across the range.&lt;/p&gt;&lt;p&gt;To obtain insights into the Quaternary distribution and rates of exhumation of the western Southern Alps, we use new &lt;sup&gt;10&lt;/sup&gt;Be catchment-averaged erosion rates from 20 catchments along the western side of the range. Catchment-averaged erosion rates span an order of magnitude, between ~0.8 and &gt;10 mm/yr, but we find that erosion rates of &gt;10 mm/yr, a value often quoted in the literature as representative for the entire range, are very localized. Moreover, erosion rates decrease sharply north of the intersection with the Marlborough Fault System, suggesting substantial slip partitioning. These &lt;sup&gt;10&lt;/sup&gt;Be catchment-averaged erosion rates integrate, on average, over the last ~300 yrs. Considering that the last earthquake on the Alpine Fault was in 1717, these rates are representative of inter-seismic erosion. Lake sedimentation rates and coseismic landslide modelling suggest that long-term (~10&lt;sup&gt;3&lt;/sup&gt; yrs) erosion rates over a full seismic cycle could be ~40% greater than our inter-seismic erosion rates. If we assume steady state topography, such a scaling of our &lt;sup&gt;10&lt;/sup&gt;Be erosion rate estimates can be used to estimate rock uplift rates in the Southern Alps. Finally, we find that erosion, and hence potentially exhumation, does not seem to be localized at a particular distance from the fault, as some tectonic and provenance studies have suggested. Instead, we find that superimposed on the primary tectonic control, there is an elevation/temperature control on erosion rates, which is probably transient and related to frost-cracking and glacial retreat.&lt;/p&gt;&lt;p&gt;Our results highlight the potential for &lt;sup&gt;10&lt;/sup&gt;Be catchment-averaged erosion rates to provide insights into the magnitude and distribution of tectonic deformation rates, and the limitations that arise from transient erosion controls related to the seismic cycle and climate-modulated surface processes.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


1995 ◽  
Vol 13 (2-3) ◽  
pp. 245-252
Author(s):  
J M Beggs

New Zealand's scientific institutions have been restructured so as to be more responsive to the needs of the economy. Exploration for and development of oil and gas resources depend heavily on the geological sciences. In New Zealand, these activities are favoured by a comprehensive, open-file database of the results of previous work, and by a historically publicly funded, in-depth knowledge base of the extensive sedimentary basins. This expertise is now only partially funded by government research contracts, and increasingly undertakes contract work in a range of scientific services to the upstream petroleum sector, both in New Zealand and overseas. By aligning government-funded research programmes with the industry's knowledge needs, there is maximum advantage in improving the understanding of the occurrence of oil and gas resources. A Crown Research Institute can serve as an interface between advances in fundamental geological sciences, and the practical needs of the industry. Current publicly funded programmes of the Institute of Geological and Nuclear Sciences include a series of regional basin studies, nearing completion; and multi-disciplinary team studies related to the various elements of the petroleum systems of New Zealand: source rocks and their maturation, migration and entrapment as a function of basin structure and tectonics, and the distribution and configuration of reservoir systems.


Nature ◽  
1974 ◽  
Vol 252 (5485) ◽  
pp. 756-756
Author(s):  
DAVID J. CULLEN
Keyword(s):  

2021 ◽  
Author(s):  
◽  
Kenny Graham

<p>This thesis involves the study of crustal seismic anisotropy through shear wave splitting. For the past three decades, shear wave splitting (SWS) measurements from crustal earthquakes have been utilized as a technique to characterize seismic anisotropic structures and to infer in situ crustal properties such as the state of the stress and fracture geometry and density. However, the potential of this technique is yet to be realized in part because measurements on local earthquakes are often controlled and/or affected by physical mechanisms and processes which lead to variations in measurements and make interpretation difficult. Many studies have suggested a variety of physical mechanisms that control and/or affect SWS measurements, but few studies have quantitatively tested these suggestions. This thesis seeks to fill this gap by investigating what controls crustal shear-wave splitting (SWS) measurements using empirical and numerical simulation approaches, with the ultimate aim of improving SWS interpretation. For our empirical approach, we used two case studies to investigate what physical processes control seismic anisotropy in the crust at different scales and tectonic settings. In the numerical simulation test, we simulate the propagation of seismic waves in a variety of scenarios.  We begin by measuring crustal anisotropy via SWS analysis around central New Zealand, where clusters of closely-spaced earthquakes have occurred. We used over 40,000 crustal earthquakes across 36 stations spanning close to 5.5 years between 2013 and 2018 to generate the largest catalog of high-quality SWS measurements (~102,000) around the Marlborough and Wellington region. The size of our SWS catalog allowed us to perform a detailed systematic analysis to investigate the processes that control crustal anisotropy and we also investigated the spatial and temporal variation of the anisotropic structure around the region. We observed a significant spatial variation of SWS measurements in Central New Zealand. We found that the crustal anisotropy around Central New Zealand is confined to the upper few kilometers of the crust, and is controlled by either one mechanism or a combination of more than one (such as structural, tectonic stresses, and gravitational stresses). The high correspondence between the orientation of the maximum horizontal compressive stress calculated from gravitational potential energy from topography and average fast polarization orientation around the Kaikōura region suggests that gravitationally induced stresses control the crustal anisotropy in the Kaikōura region. We suggest that examining the effect of gravitational stresses on crustal seismic anisotropy should not be neglected in future studies. We also observed no significant temporal changes in the state of anisotropy over the 5.5 year period despite the occurrence of significant seismicity.   For the second empirical study, we characterized the anisotropic structure of a fault approaching failure (the Alpine Fault of New Zealand). We performed detailed SWS analysis on local earthquakes that were recorded on a dense array of 159 three-component seismometers with inter-station spacing about 30 m around the Whataroa Valley, New Zealand. The SWS analysis of data from this dense deployment enabled us to map the spatial characteristics of the anisotropic structure and also to investigate the mechanisms that control anisotropy in the Whataroa valley in the vicinity of the Alpine Fault. We observed that the orientation of the fast direction is parallel to the strike of the Alpine Fault trace and the orientations of the regional and borehole foliation planes. We also observed that there was no significant spatial variation of the anisotropic structure as we move across the Alpine Fault trace from the hanging wall to the footwall. We inferred that the geological structures, such as the Alpine Fault fabric and foliations within the valley, are the main mechanisms that control the anisotropic structure in the Whataroa valley.    For our numerical simulation approach, we simulate waveforms propagating through an anisotropic media (using both 1-D and 3-D techniques). We simulate a variety of scenarios, to investigate how some of the suggested physical mechanisms affect SWS measurements. We considered (1) the effect on seismic waves caused by scatterers along the waves' propagation path, (2) the effect of the earthquake source mechanism, (3) the effect of incidence angle of the incoming shear wave. We observed that some of these mechanisms (such as the incidence angle of the incoming shear wave and scatterers) significantly affect SWS measurement while others such as earthquake source mechanisms have less effect on SWS measurements. We also observed that the effect of most of these physical mechanisms depends on the wavelength of the propagating shear wave relative to the size of the features. There is a significant effect on SWS measurements if the size of the physical mechanism (such as scatterers) is comparable to the wavelength of the incoming shear wave. With a larger wavelength, the wave treats the feature as a homogeneous medium.</p>


Sign in / Sign up

Export Citation Format

Share Document