scholarly journals Expanding the Propagule Pressure Concept to Understand the Impact of Biological Invasions

2010 ◽  
pp. 225-235 ◽  
Author(s):  
Anthony Ricciardi ◽  
Lisa A. Jones ◽  
Åsa M. Kestrup ◽  
Jessica M. Ward
iScience ◽  
2021 ◽  
pp. 102659
Author(s):  
Pawel Sierocinski ◽  
Jesica Soria Pascual ◽  
Daniel Padfield ◽  
Mike Salter ◽  
Angus Buckling

2019 ◽  
Vol 34 ◽  
pp. 127-144 ◽  
Author(s):  
Flavio Marzialetti ◽  
Manuele Bazzichetto ◽  
Silvia Giulio ◽  
Alicia T.R. Acosta ◽  
Angela Stanisci ◽  
...  

Invasive Alien Species (IAS) pose a major threat to biodiversity and ecosystem services worldwide. Even if preventing biological invasions should be the most cost-effective way to minimise the impact of IAS on biodiversity, new efforts are necessary to identify early signs of invasion and to assess invasion risk. In this context, the implementation of invasive Species Distribution Models (iSDMs) could represent a sound instrument that merits further research. Acaciasaligna is an Australian vascular plant introduced into Europe during the last half century and is one of the most aggressive IAS in the Mediterranean basin. In this work, we model the occurrence of A.saligna in the coastal landscapes of central Italy (Adriatic coast) while accounting for the simultaneous effect of multiple factors (propagule pressure, abiotic, biotic factors). The iSDM for A.saligna was implemented on a representative tract of the Adriatic coast in central Italy (Molise region), largely included in two Long-Term Ecological Research (LTER) sites which actively contribute to the description of the considered ecosystem status and possible future trends. By using a Generalised Linear Model (GLM) with a binomial distribution of errors based on field and cartographic geo-referenced data, we examined the statistical relationship between the occurrence of A.saligna and a comprehensive set of environmental factors. The iSDM effectively captured the role of the different variables in determining the occurrence of A.saligna in the coastal dunes. Its occurrence is primarily related to Wooded dunes with Pinuspinea and/or P.pinaster (EU Habitat 2270) and distance from the sea and, to a lesser extent, with distance from roads and rivers. This research provides a first exploratory analysis of the environmental characteristics that promote the rapid growth and development of A.saligna in Italian dune ecosystems, identifying the habitats that are mainly affected by the invasive process in coastal areas and, by doing so, contributing to filling the gap between theory and practice in conservation decision-making. Finally, the LTER network benefitted from this research, confirming its relevance in providing useful information for modelling and monitoring invasion processes.


NeoBiota ◽  
2019 ◽  
Vol 46 ◽  
pp. 1-21 ◽  
Author(s):  
Andrzej M. Jagodziński ◽  
Marcin K. Dyderski ◽  
Paweł Horodecki ◽  
Kathleen S. Knight ◽  
Katarzyna Rawlik ◽  
...  

Experiments testing multiple factors that affect the rate of invasions in forests are scarce. We aimed to assess how the biomass of invasive Prunusserotina changed over eight years and how this change was affected by light availability, tree stand growth, and propagule pressure. The study was conducted in Siemianice Experimental Forest (W Poland), a common garden forest experiment with 14 tree species. We investigated aboveground biomass and density of P.serotina within 53 experimental plots with initial measurements in 2005 and repeated in 2013. We also measured light availability and distance from seed sources. We used generalized additive models to assess the impact of particular predictors on P.serotina biomass in 2013 and its relative change over eight years. The relative biomass increments of P.serotina ranged from 0 to 22,000-fold. The success of P.serotina, expressed as aboveground biomass and biomass increment, varied among different tree species stands, but was greater under conifers. Total biomass of P.serotina depended on light and propagule availability while biomass increment depended on the change in tree stand biomass, a metric corresponding to tree stand maturation. Our study quantified the range of invasion intensity, expressed as biomass increment, in a forest common garden experiment with 14 tree species. Canopy cover was the most important variable to reduce susceptibility to invasion by P.serotina. Even a modest decrease of overstory biomass, e.g. caused by dieback of coniferous species, may be risky in areas with high propagule pressure from invasive tree species. Thus, P.serotina control may include maintaining high canopy closure and supporting natural regeneration of tree species with high leaf area index, which shade the understory.


2021 ◽  
Author(s):  
◽  
Evan Brenton-Rule

<p>Biological invasions are one of the major causes of biodiversity decline on the planet. The key driver of the global movement of invasive species is international trade. As a response to trade driven invasive species risk, international and domestic regulations have been promulgated with the goal of managing the spread and impact of non-native species. My aims in this thesis were twofold. First, my goal was to review a subset of international and domestic regulations with a view to commenting on their fitness for purpose and suggesting potential improvements. Second, I used the example of non-native and invasive Hymenoptera, as well as their pathogens, to illustrate the risks posed by invasive species and gaps in their management.   In order to assess international and domestic regulations, I reviewed the World Trade Organization’s (WTO) Agreement on Sanitary and Phytosanitary Measures, as well as associated disputes. I argue that the WTO’s regulatory system does, for the most part, allow domestic regulators to manage invasive species risk as they see fit. Subsequently, the focus of the thesis narrows to investigate New Zealand’s pre- and post-border regime managing invasive species. I argue that New Zealand’s pre-border approach represents international best practice, but the post-border management of species is fragmented. The power to manage invasive species has been delegated to sub-national and regional bodies, which typically approach invasive species management in different ways. This variation has led to regulatory inconsistencies in pests managed and funding allocated. There appears to be a substantial lack of planning in some spaces, such as the risk of aquatic invasions. I make recommendations to ameliorate these inconsistencies.   My second aim involved the study of non-native and invasive Hymenoptera in New Zealand, as well as the pathogens they carry, in order to illustrate the risks posed by invasive species and gaps in their management. I show that the globally widespread invasive Argentine ant (Linepithema humile) may play a role in the pathogen dynamics and mortality of honey bee hives where the species occur sympatrically. Hives in the presence of Argentine ants suffered significantly higher mortality rates relative to hives without ants and always had higher levels of a honey bee pathogen Deformed wing virus. I demonstrate that honey bee pathogens are found in a range of invasive Hymenoptera in New Zealand. I amplify entire genomes of the honey bee virus Kashmir bee virus (KBV) from three species of non-native or invasive Hymenoptera (Argentine ants, common wasps and honey bees). I show that there is KBV strain variability within and between regions, but more between regions. Further, I demonstrate the result that as sampled KBV sequence length increases, so too does sampled diversity. These results highlight how ‘an’ invasive species is typically not alone: they carry a range of diseases that are almost always not considered in international and regional management plans.   Patterns of non-native Hymenoptera carrying honey bee diseases were not restricted to New Zealand. I used mitochondrial DNA to find the likely origin of invasive populations of the globally distributed invasive German wasp. I demonstrate that German wasps show reduced genetic diversity in the invaded range compared to the native range. Populations in the introduced range are likely to have arrived from different source populations. In some regions there were likely multiple introductions. Other regions are genetically homogenous and represent potential areas for use of gene drive technologies. All four different honey bee pathogens assayed for were found in German wasp populations worldwide. These results highlight how the introduction of one exotic species likely brings a range of pathogens. This example of pathogens in Hymenoptera is likely to be true for nearly all non-native introductions.  Many of the impacts of biological invasions, such as predation and competition, are relatively obvious and are frequently studied. However some, such as the impact of pathogens, are unseen and poorly understood. Legal regulation is often a post-hoc response implemented once a problem has already arisen. At a global level regulatory regimes operate relatively effectively. As the focus becomes more granular, such as the case of pathogens of Hymenoptera, fewer controls exists. This thesis helps to reduce uncertainty in this area as well as makes recommendations as to how these risks may be managed.</p>


2018 ◽  
Vol 16 (6) ◽  
pp. 345-353 ◽  
Author(s):  
Elizabeta Briski ◽  
Farrah T Chan ◽  
John A Darling ◽  
Velda Lauringson ◽  
Hugh J MacIsaac ◽  
...  

SCOPE, the Scientific Committee on Problems of the Environment, analyses such problems by means of programmes leading to published reports on the state of knowledge. The meeting reported here was the major British contribution to the SCOPE Programme on the Ecology of Biological Invasions. It is a slightly unusual programme for SCOPE in that the subject is an entirely biological one, and also in that, although most of the problems are caused by invasions induced by man, some can arise as a result of natural extensions of range. Such effects are often acute in ecosystems with a mediterranean climate away from the Mediterranean itself, that is to say in California, South Africa and Australia. These mediterranean zones are in different biogeographical regions, so the organisms native and introduced to them have, in general, no evolutionary experience of each other. Species introduced from one such region to another have frequently spread in semi-natural and natural ecosystems. The SCOPE programme arises from concern about the impact and management of such pests in particular. The preamble to the programme (Anon. 1985) therefore talks about ‘ the introduction of plants, animals and micro-organisms to regions remote from their centres of origin. ’ It goes on to say that the ‘ areas include a wide variety of non-agricultural, non-urban land such as native forests and rangelands, and protected areas like National Parks and Ecological Reserves.’


Author(s):  
Maria Balazova ◽  
Dana Blahutova ◽  
Terezia Valaskova

Biological invasions are recognised as a potentially major threat to biodiversity and may have considerable economic and social effects. Public, including pupils, attitudes may have large implications for invasive species management in terms of prevention, early warning and eradication success, but significant is the relations between the lay public’s visions of nature, their knowledge about non-native species and their perceptions of invasive species management. The more direct experience people have with the impact of invasive species, the more likely they will be able to understand the potential benefits of management programmes. The aim of our work was to prepare educational materials about invasive organisms for elementary schools. Some of them were subsequently applied directly in practice as part of an excursion in a schoolyard in west Slovakia, where up to six species of invasive plants were identified in the close proximity to the school. Keywords: Biological invasions, prevention, education, excursion.


PLoS Biology ◽  
2018 ◽  
Vol 16 (4) ◽  
pp. e2005987 ◽  
Author(s):  
Phillip Cassey ◽  
Steven Delean ◽  
Julie L. Lockwood ◽  
Jason S. Sadowski ◽  
Tim M. Blackburn

2015 ◽  
Vol 2 (4) ◽  
pp. 150039 ◽  
Author(s):  
Robert C. Cope ◽  
Thomas A. A. Prowse ◽  
Joshua V. Ross ◽  
Talia A. Wittmann ◽  
Phillip Cassey

Biological invasions have the potential to cause extensive ecological and economic damage. Maritime trade facilitates biological invasions by transferring species in ballast water, and on ships' hulls. With volumes of maritime trade increasing globally, efforts to prevent these biological invasions are of significant importance. Both the International Maritime Organization and the Australian government have developed policy seeking to reduce the risk of these invasions. In this study, we constructed models for the transfer of ballast water into Australian waters, based on historic ballast survey data. We used these models to hindcast ballast water discharge over all vessels that arrived in Australian waters between 1999 and 2012. We used models for propagule survival to compare the risk of ballast-mediated propagule transport between ecoregions. We found that total annual ballast discharge volume into Australia more than doubled over the study period, with the vast majority of ballast water discharge and propagule pressure associated with bulk carrier traffic. As such, the ecoregions suffering the greatest risk are those associated with the export of mining commodities. As global marine trade continues to increase, effective monitoring and biosecurity policy will remain necessary to combat the risk of future marine invasion events.


Sign in / Sign up

Export Citation Format

Share Document