scholarly journals The impact of propagule pressure on whole community invasions in biomethane-producing communities

iScience ◽  
2021 ◽  
pp. 102659
Author(s):  
Pawel Sierocinski ◽  
Jesica Soria Pascual ◽  
Daniel Padfield ◽  
Mike Salter ◽  
Angus Buckling
2019 ◽  
Vol 34 ◽  
pp. 127-144 ◽  
Author(s):  
Flavio Marzialetti ◽  
Manuele Bazzichetto ◽  
Silvia Giulio ◽  
Alicia T.R. Acosta ◽  
Angela Stanisci ◽  
...  

Invasive Alien Species (IAS) pose a major threat to biodiversity and ecosystem services worldwide. Even if preventing biological invasions should be the most cost-effective way to minimise the impact of IAS on biodiversity, new efforts are necessary to identify early signs of invasion and to assess invasion risk. In this context, the implementation of invasive Species Distribution Models (iSDMs) could represent a sound instrument that merits further research. Acaciasaligna is an Australian vascular plant introduced into Europe during the last half century and is one of the most aggressive IAS in the Mediterranean basin. In this work, we model the occurrence of A.saligna in the coastal landscapes of central Italy (Adriatic coast) while accounting for the simultaneous effect of multiple factors (propagule pressure, abiotic, biotic factors). The iSDM for A.saligna was implemented on a representative tract of the Adriatic coast in central Italy (Molise region), largely included in two Long-Term Ecological Research (LTER) sites which actively contribute to the description of the considered ecosystem status and possible future trends. By using a Generalised Linear Model (GLM) with a binomial distribution of errors based on field and cartographic geo-referenced data, we examined the statistical relationship between the occurrence of A.saligna and a comprehensive set of environmental factors. The iSDM effectively captured the role of the different variables in determining the occurrence of A.saligna in the coastal dunes. Its occurrence is primarily related to Wooded dunes with Pinuspinea and/or P.pinaster (EU Habitat 2270) and distance from the sea and, to a lesser extent, with distance from roads and rivers. This research provides a first exploratory analysis of the environmental characteristics that promote the rapid growth and development of A.saligna in Italian dune ecosystems, identifying the habitats that are mainly affected by the invasive process in coastal areas and, by doing so, contributing to filling the gap between theory and practice in conservation decision-making. Finally, the LTER network benefitted from this research, confirming its relevance in providing useful information for modelling and monitoring invasion processes.


NeoBiota ◽  
2019 ◽  
Vol 46 ◽  
pp. 1-21 ◽  
Author(s):  
Andrzej M. Jagodziński ◽  
Marcin K. Dyderski ◽  
Paweł Horodecki ◽  
Kathleen S. Knight ◽  
Katarzyna Rawlik ◽  
...  

Experiments testing multiple factors that affect the rate of invasions in forests are scarce. We aimed to assess how the biomass of invasive Prunusserotina changed over eight years and how this change was affected by light availability, tree stand growth, and propagule pressure. The study was conducted in Siemianice Experimental Forest (W Poland), a common garden forest experiment with 14 tree species. We investigated aboveground biomass and density of P.serotina within 53 experimental plots with initial measurements in 2005 and repeated in 2013. We also measured light availability and distance from seed sources. We used generalized additive models to assess the impact of particular predictors on P.serotina biomass in 2013 and its relative change over eight years. The relative biomass increments of P.serotina ranged from 0 to 22,000-fold. The success of P.serotina, expressed as aboveground biomass and biomass increment, varied among different tree species stands, but was greater under conifers. Total biomass of P.serotina depended on light and propagule availability while biomass increment depended on the change in tree stand biomass, a metric corresponding to tree stand maturation. Our study quantified the range of invasion intensity, expressed as biomass increment, in a forest common garden experiment with 14 tree species. Canopy cover was the most important variable to reduce susceptibility to invasion by P.serotina. Even a modest decrease of overstory biomass, e.g. caused by dieback of coniferous species, may be risky in areas with high propagule pressure from invasive tree species. Thus, P.serotina control may include maintaining high canopy closure and supporting natural regeneration of tree species with high leaf area index, which shade the understory.


2010 ◽  
pp. 225-235 ◽  
Author(s):  
Anthony Ricciardi ◽  
Lisa A. Jones ◽  
Åsa M. Kestrup ◽  
Jessica M. Ward

mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Michaeline B. N. Albright ◽  
Sanna Sevanto ◽  
La Verne Gallegos-Graves ◽  
John Dunbar

ABSTRACT Microbial probiotics are intended to improve functions in diverse ecosystems, yet probiotics often fail to establish in a preexisting microbiome. This is a species invasion problem. The relative importance of the two major factors controlling establishment in this context—propagule pressure (inoculation dose and frequency) and biotic interactions (composition of introduced and resident communities)—is unknown. We tested the effect of these factors in driving microbial composition and functioning following 12 microbial community invasions (e.g., introductions of many microbial invaders) in microcosms. Ecosystem functioning over a 30-day postinvasion period was assessed by measuring activity (respiration) and environment modification (dissolved organic carbon abundance). To test the dependence on environmental context, experiments were performed in two resource environments. In both environments, biotic interactions were more important than propagule pressure in driving microbial composition and community function, but the magnitude of effect varied by environment. Successful invaders comprised approximately 8% of the total number of operational taxonomic units (OTUs). Bacteria were better invaders than fungi, with average relative abundances of 7.4% ± 6.8% and 1.5% ± 1.4% of OTUs, respectively. Common bacterial invaders were associated with stress response traits. The most resilient bacterial and fungal families, in other words, those least impacted by invasions, were linked to antimicrobial resistance or production traits. Illuminating the principles that determine community composition and functioning following microbial invasions is key to efficient community engineering. IMPORTANCE With increasing frequency, humans are introducing new microbes into preexisting microbiomes to alter functioning. Example applications include modification of microflora in human guts for better health and those of soil for food security and/or climate management. Probiotic applications are often approached as trial-and-error endeavors and have mixed outcomes. We propose that increased success in microbiome engineering may be achieved with a better understanding of microbial invasions. We conducted a microbial community invasion experiment to test the relative importance of propagule pressure and biotic interactions in driving microbial community composition and ecosystem functioning in microcosms. We found that biotic interactions were more important than propagule pressure in determining the impact of microbial invasions. Furthermore, the principles for community engineering vary among organismal groups (bacteria versus fungi).


2019 ◽  
Author(s):  
Michaeline B.N. Albright ◽  
Sanna Sevanto ◽  
La Verne Gallegos-Graves ◽  
John Dunbar

AbstractMicrobial probiotics are designed to improve functions in diverse ecosystems, yet probiotics often fail to have the desired beneficial effects. The introduction of probiotics to an environment with a preexisting microbiome is analogous to an invasion event, but is rarely considered in this light. Here, we tested the relative importance of propagule pressure (inoculation dose and frequency) compared to biotic interactions (composition of introduced and resident communities) in driving microbial composition and functional outcomes following microbial community invasions in experimental microcosms. Ecosystem functioning was assessed through measurements of CO2 production and DOC (dissolved organic carbon) accumulation, an activity and an environmental modification metric, respectively. Further, to test the dependence of propagule pressures versus biotic interactions was dependent on environmental context, experiments were performed on two different substrates, R2A agar and plant litter. In both environments, we found that biotic interactions were more important than propagule pressure in driving microbial composition. Moreover, bacteria were more successful invaders than fungi. While successful invasion is a first step, ultimately the success of microbial invasions in microbiome engineering applications is measured by the impact on ecosystem functioning. As with shaping the microbiome composition, biotic interactions were key to functional outcomes, but the magnitude of the functional impact varied by environment. Identifying general principles that determine the community composition and functioning following microbial invasions is key to efficient community engineering.SignificanceWith increasing frequency humans are introducing new microbes into pre-existing microbiomes to alter functioning. Examples include, modification of microflora in human guts for better health, and soil for food security and/or climate management. Probiotic applications are often approached as trial-and-error endeavors and have mixed outcomes. We propose that increased success in microbiome engineering may be achieved by better understanding of microbial invasions. We conducted a microbial community invasion experiment, to test the relative importance of propagule pressure and biotic interactions in driving microbial community composition and ecosystem functioning in microcosms. We found that biotic interactions were more important than propagule pressure in determining the impact of microbial invasions. Furthermore, the principles for community engineering vary among organismal groups (bacteria versus fungi).


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.


1997 ◽  
Vol 161 ◽  
pp. 189-195
Author(s):  
Cesare Guaita ◽  
Roberto Crippa ◽  
Federico Manzini

AbstractA large amount of CO has been detected above many SL9/Jupiter impacts. This gas was never detected before the collision. So, in our opinion, CO was released from a parent compound during the collision. We identify this compound as POM (polyoxymethylene), a formaldehyde (HCHO) polymer that, when suddenly heated, reformes monomeric HCHO. At temperatures higher than 1200°K HCHO cannot exist in molecular form and the most probable result of its decomposition is the formation of CO. At lower temperatures, HCHO can react with NH3 and/or HCN to form high UV-absorbing polymeric material. In our opinion, this kind of material has also to be taken in to account to explain the complex evolution of some SL9 impacts that we observed in CCD images taken with a blue filter.


1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


Sign in / Sign up

Export Citation Format

Share Document