The role of bacterial sulphate reduction in carbonate replacement of vanished evaporites: examples from the Holocene, Jurassic and Neoarchaean

Author(s):  
David T. Wright ◽  
Anthony Kirkham
2011 ◽  
Vol 148 (4) ◽  
pp. 655-669 ◽  
Author(s):  
J. LINDTKE ◽  
S. B. ZIEGENBALG ◽  
B. BRUNNER ◽  
J. M. ROUCHY ◽  
C. PIERRE ◽  
...  

AbstractAbundant sulphur is present in the Late Miocene evaporitic sequence of the lacustrine Hellín basin in SE Spain. Weathering of Triassic evaporites controlled the chemical composition of the Miocene lake. The lacustrine deposits comprise gypsum, marlstones, diatomites and carbonate beds. Sulphur-bearing carbonate deposits predominantly consist of early diagenetic dolomite. Abundant dolomite crystals with a spheroidal habit are in accordance with an early formation and point to a microbial origin. The carbon isotopic composition of the dolomite (δ13C values between −10 and −4‰) indicates mixing of lake water carbonate and carbonate derived from the remineralization of organic matter by heterotrophic bacteria. Dolomite precipitated syngenetically under evaporitic conditions as indicated by high oxygen isotope values (δ18O between +6 and +11‰). Nodules of native sulphur are found in gypsum, carbonate beds and marlstone layers. Sulphur formed in the course of microbial sulphate reduction, as reflected by its strong depletion in34S (δ34S values as low as −17‰). Near to the surface many of the sulphur nodules were in part or completely substituted by secondary gypsum, which still reflects the sulphur isotopic composition of native sulphur (−18 to −10‰). This study exemplifies the role of bacterial sulphate reduction in the formation of dolomite and native sulphur in a semi-enclosed lacustrine basin during Late Miocene time.


2007 ◽  
Vol 55 (5) ◽  
pp. 319-326 ◽  
Author(s):  
D. Glindemann ◽  
J.T. Novak ◽  
J. Witherspoon

Sewage plants can experience dimethyl sulphide (DMS) odour problems by at least one mg/L dimethylsulphoxide (DMSO) waste residue in plant influent, through a DMSO/DMS reduction mechanism. This bench-scale batch study simulates in bottles the role of poor aeration in wastewater treatment on the DMSO/DMS and sulphate/H2S reduction. The study compares headspace concentrations of sulphide odorants developed by activated sludge (closed bottles, half full) after six hours under anoxic versus anaerobic conditions, with 0 versus 2 mg/L DMSO addition. Anoxic sludge (0.1–2 mg/L dissolved oxygen, DO) with DMSO resulted in about 50 ppmv DMS and no other sulphide, while DMSO-free sludge was free of detectable sulphides. Anaerobic sludge (no measurable DO to the point of sulphate reduction) with DMSO resulted in 22/4/37 ppmv of H2S/methanethiol (MT)/DMS, while DMSO-free sludge resulted in 44/8/2 ppmv of H2S/MT/DMS. It is concluded that common “anoxic” aeration tank zones with measurable DO in bulk water but immeasurable DO inside sludge flocs (nitrate reducing) experience DMSO reduction to DMS that is oxidation resistant and becomes the most important odorant. Under anaerobic conditions, H2S from sulphate reduction becomes an additional important odorant. A strategy is developed that allows operators to determine from the quantity of different sulphides whether the DMSO/DMS mechanism is important at their wastewater plant.


1985 ◽  
Vol 122 (3) ◽  
pp. 279-286 ◽  
Author(s):  
K. Pye

AbstractZoned dolomite rhombs which occur in the organic-rich Jet Rock Formation (Toarcian) of northeast England have been studied using backscattered scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray microanalysis. The rhombs, which are 5–20 μm in size, are variable in chemical composition, but many consist of a dolomite core surrounded by a zone of ferroan dolomite, ankerite or ferroan calcite. Zoned rhombs occur in early-diagenetic calcite-cemented concretions and layers as well as dispersed throughout the shales. Distributional and textural evidence suggests that they formed mainly by primary precipitation from pore fluids within the zone of bacterial sulphate reduction. The ferroan outer zones probably formed after burial below the sulphate reduction zone when insufficient H2S was available to react with all the Fe2+ in solution.


Laboratory, field, and theoretical studies have shown that the rate of bacterial sulphate reduction during early diagenesis depends primarily on the reactivity of sedimentary organic matter whose decomposition follows first-order kinetics, with rate constants varying over six orders of magnitude. Decay rates decrease with decreasing sediment burial rate and, for a given sediment, with depth, because o f the successive utilization by bacteria of less and less reactive organic compounds. High burial (and bioturbation) rates enable reactive compounds to become available for sulphate reduction, at depth, which otherwise would be destroyed by molecular oxygen at or above the sediment-water interface. An important consequence of bacterial sulphate reduction is the formation of sedimentary pyrite, FeS 2 . In normal marine sediments (those deposited in oxygenated bottom waters) pyrite formation is limited by the concentration and reactivity of organic matter, whereas in euxinic (sulphidic) basins pyrite is limited by the abundance and reactivity of detrital iron minerals, and in non-saline swamp and lake sediments by the low levels of dissolved sulphate found in fresh water. Because of these differences in limiting factors, the three environments can be distinguished in both modern sediments and ancient rocks by plots of organic carbon, C against pyrite sulphur, S. Values of the C:S ratio based on theoretical calculations indicate that worldwide the bulk of organic matter burial has shifted considerably between these environments over Phanerozoic time.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Yonggang Liu ◽  
Ming Zhang ◽  
Zhengyu Liu ◽  
Yan Xia ◽  
Yi Huang ◽  
...  
Keyword(s):  

Sedimentology ◽  
2002 ◽  
Vol 49 (1) ◽  
pp. 171-190 ◽  
Author(s):  
Conxita Taberner ◽  
James D. Marshall ◽  
James P. Hendry ◽  
Catherine Pierre ◽  
M. F. Thirlwall

2006 ◽  
Vol 54 (2) ◽  
pp. 171-177 ◽  
Author(s):  
F.J. Cervantes ◽  
J.E. Enriquez ◽  
M.R. Mendoza-Hernandez ◽  
E. Razo-Flores ◽  
J.A. Field

The aim of this study was to investigate the impact of a broad range of sulphate concentrations (0–10 g SO4−2 L−1) on the reduction of an azo dye (reactive orange 14 (RO14)) by an anaerobic sludge. An increase in the sulphate concentration generally stimulated the reduction of RO14 by sludge incubations supplemented with glucose, acetate or propionate as electron donor. Sulphate and azo dye reductions took place simultaneously in all incubations. However, there was a decrease on the rate of decolorization when sulphate was supplied at 10 g SO4−2 L−1. Abiotic incubations at different sulphide concentrations (0–2.5 g sulphide L−1) promoted very poor reduction of RO14. However, addition of riboflavin (20 μM), as a redox mediator, accelerated the reduction of RO14 up to 44-fold compared to a control lacking the catalyst. Our results indicate that sulphate-reduction may significantly contribute to the reduction of azo dyes both by biological mechanisms and by abiotic reductions implicating sulphide as an electron donor. The contribution of abiotic decolorization by sulphide, however, was only significant when a proper redox mediator was included. Our results also revealed that sulphate-reduction can out-compete with azo reduction at high sulphate concentrations leading to a poor decolorising performance when no sufficient reducing capacity is available.


Sign in / Sign up

Export Citation Format

Share Document