Dissecting Intracellular Proteolysis Using Small Molecule Inhibitors and Molecular Probes

2008 ◽  
pp. 51-78
Author(s):  
Huib Ovaa ◽  
Herman S. Overkleeft ◽  
Benedikt M. Kessler ◽  
Hidde L. Ploegh
2008 ◽  
pp. 51-78
Author(s):  
Huib Ovaa ◽  
Herman S. Overkleeft ◽  
Benedikt M. Kessler ◽  
Hidde L. Ploegh

2021 ◽  
Vol 22 (12) ◽  
pp. 6213
Author(s):  
Seonghyeon Moon ◽  
Srinivasan Muniyappan ◽  
Sung-Bae Lee ◽  
Byung-Hoon Lee

The 26S proteasome is the principal protease for regulated intracellular proteolysis. This multi-subunit complex is also pivotal for clearance of harmful proteins that are produced throughout the lifetime of eukaryotes. Recent structural and kinetic studies have revealed a multitude of conformational states of the proteasome in substrate-free and substrate-engaged forms. These conformational transitions demonstrate that proteasome is a highly dynamic machinery during substrate processing that can be also controlled by a number of proteasome-associated factors. Essentially, three distinct family of deubiquitinases–USP14, RPN11, and UCH37–are associated with the 19S regulatory particle of human proteasome. USP14 and UCH37 are capable of editing ubiquitin conjugates during the process of their dynamic engagement into the proteasome prior to the catalytic commitment. In contrast, RPN11-mediated deubiquitination is directly coupled to substrate degradation by sensing the proteasome’s conformational switch into the commitment steps. Therefore, proteasome-bound deubiquitinases are likely to tailor the degradation events in accordance with substrate processing steps and for dynamic proteolysis outcomes. Recent chemical screening efforts have yielded highly selective small-molecule inhibitors for targeting proteasomal deubiquitinases, such as USP14 and RPN11. USP14 inhibitors, IU1 and its progeny, were found to promote the degradation of a subset of substrates probably by overriding USP14-imposed checkpoint on the proteasome. On the other hand, capzimin, a RPN11 inhibitor, stabilized the proteasome substrates and showed the anti-proliferative effects on cancer cells. It is highly conceivable that these specific inhibitors will aid to dissect the role of each deubiquitinase on the proteasome. Moreover, customized targeting of proteasome-associated deubiquitinases may also provide versatile therapeutic strategies for induced or repressed protein degradation depending on proteolytic demand and cellular context.


2018 ◽  
Author(s):  
Matthew A Durst ◽  
Kiira Ratia ◽  
Arnon Lavie

Ectonucleoside Triphosphate Diphosphohydrolase 5 (ENTPD5) has been shown to be important in maintaining cellular function in cancer, and its expression is upregulated through multiple, unique pathways in certain cancers, including laryngeal, glioblastoma multiforme, breast, testicular, and prostate. ENTPD5 supports cancer growth by promoting the import of UDP-glucose, a metabolite used for protein glycosylation and hence proper glycoprotein folding, into the ER by providing the counter molecule, UMP, to the ER antiporter. Despite its cancer-supporting function, no small molecule inhibitors of ENTPD5 are commercially available, and few studies have been performed in tissue culture to understand the effects of chemical inhibition of ENTPD5. We performed a high-throughput screen (HTS) of 21,120 compounds to identify small molecule inhibitors of ENPTD5 activity. Two hits were identified, and we performed a structure activity relationship (SAR) screen around these hits. Further validation of these probes were done in an orthogonal assay and then assayed in cell culture to assess their effect on prostate cancer cell lines. Notably, treatment with the novel ENTPD5 inhibitor reduced the amount of glycoprotein produced in treated cells, consistent with the hypothesis that ENTPD5 is important for glycoprotein folding. This work serves as an important step in designing new molecular probes for ENTPD5 as well as further probing the utility of targeting ENTPD5 to combat cancer cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document