Formation and Evolution of Brown Dwarfs

2008 ◽  
pp. 357-374 ◽  
Author(s):  
Alexander Scholz
2011 ◽  
Vol 7 (S282) ◽  
pp. 105-110 ◽  
Author(s):  
Katelyn N. Allers

AbstractNearly 500 brown dwarfs have been discovered in recent years. The majority of these brown dwarfs exist in the solar neighborhood, yet determining their fundamental properties (mass, age, temperature & metallicity) has proved to be quite difficult, with current estimates relying heavily on theoretical models. Binary brown dwarfs provide a unique opportunity to empirically determine fundamental properties, which can then be used to test model predictions. In addition, the observed binary fractions, separations, mass ratios, & orbital eccentricities can provide insight into the formation mechanism of these low-mass objects. I will review the results of various brown dwarf multiplicity studies, and will discuss what we have learned about the formation and evolution of brown dwarfs by examining their binary properties as a function of age and mass.


Author(s):  
Christiane Helling ◽  
Paul B. Rimmer

The study of the composition of brown dwarf atmospheres helped to understand their formation and evolution. Similarly, the study of exoplanet atmospheres is expected to constrain their formation and evolutionary states. We use results from three-dimensional simulations, kinetic cloud formation and kinetic ion-neutral chemistry to investigate ionization processes that will affect their atmosphere chemistry: the dayside of super-hot Jupiters is dominated by atomic hydrogen, and not H 2 O. Such planetary atmospheres exhibit a substantial degree of thermal ionization and clouds only form on the nightside where lightning leaves chemical tracers (e.g. HCN) for possibly long enough to be detectable. External radiation may cause exoplanets to be enshrouded in a shell of highly ionized, H 3 + -forming gas and a weather-driven aurora may emerge. Brown dwarfs enable us to study the role of electron beams for the emergence of an extrasolar, weather system-driven aurora-like chemistry, and the effect of strong magnetic fields on cold atmospheric gases. Electron beams trigger the formation of H 3 + in the upper atmosphere of a brown dwarf (e.g. LSR-J1835), which may react with it to form hydronium, H 3 O + , as a longer lived chemical tracer. Brown dwarfs and super-hot gas giants may be excellent candidates to search for H 3 O + as an H 3 + product. This article is part of a discussion meeting issue ‘Advances in hydrogen molecular ions: H 3 + , H 5 + and beyond’.


Author(s):  
Michael W. Bench ◽  
Jason R. Heffelfinger ◽  
C. Barry Carter

To gain a better understanding of the surface faceting that occurs in α-alumina during high temperature processing, atomic force microscopy (AFM) studies have been performed to follow the formation and evolution of the facets. AFM was chosen because it allows for analysis of topographical details down to the atomic level with minimal sample preparation. This is in contrast to SEM analysis, which typically requires the application of conductive coatings that can alter the surface between subsequent heat treatments. Similar experiments have been performed in the TEM; however, due to thin foil and hole edge effects the results may not be representative of the behavior of bulk surfaces.The AFM studies were performed on a Digital Instruments Nanoscope III using microfabricated Si3N4 cantilevers. All images were recorded in air with a nominal applied force of 10-15 nN. The alumina samples were prepared from pre-polished single crystals with (0001), , and nominal surface orientations.


Author(s):  
Abraham Loeb ◽  
Steven R. Furlanetto

This book provides a comprehensive, self-contained introduction to one of the most exciting frontiers in astrophysics today: the quest to understand how the oldest and most distant galaxies in our universe first formed. Until now, most research on this question has been theoretical, but the next few years will bring about a new generation of large telescopes that promise to supply a flood of data about the infant universe during its first billion years after the big bang. This book bridges the gap between theory and observation. It is an invaluable reference for students and researchers on early galaxies. The book starts from basic physical principles before moving on to more advanced material. Topics include the gravitational growth of structure, the intergalactic medium, the formation and evolution of the first stars and black holes, feedback and galaxy evolution, reionization, 21-cm cosmology, and more.


Sign in / Sign up

Export Citation Format

Share Document