Carbon Nanotube Based Flexible and Stretchable Electronics

Author(s):  
Le Cai ◽  
Chuan Wang
Nanoscale ◽  
2018 ◽  
Vol 10 (15) ◽  
pp. 6806-6811 ◽  
Author(s):  
Zheng Cui ◽  
Yiwei Han ◽  
Qijin Huang ◽  
Jingyan Dong ◽  
Yong Zhu

High-resolution, large-scale printing of highly conductive AgNWs for flexible and stretchable electronics using EHD printing is presented. The printed patterns show the smallest line width of 45 μm and electrical conductivity as high as ∼5.6 × 106S m−1. AgNW-based wearable heaters and ECG electrodes are fabricated.


2022 ◽  
Vol 3 ◽  
Author(s):  
Xusheng Liu ◽  
Jie Cao ◽  
Jie Qiu ◽  
Xumeng Zhang ◽  
Ming Wang ◽  
...  

With the tremendous progress of Internet of Things (IoT) and artificial intelligence (AI) technologies, the demand for flexible and stretchable electronic systems is rapidly increasing. As the vital component of a system, existing computing units are usually rigid and brittle, which are incompatible with flexible and stretchable electronics. Emerging memristive devices with flexibility and stretchability as well as direct processing-in-memory ability are promising candidates to perform data computing in flexible and stretchable electronics. To execute the in-memory computing paradigm including digital and analogue computing, the array configuration of memristive devices is usually required. Herein, the recent progress on flexible and stretchable memristive arrays for in-memory computing is reviewed. The common materials used for flexible memristive arrays, including inorganic, organic and two-dimensional (2D) materials, will be highlighted, and effective strategies used for stretchable memristive arrays, including material innovation and structural design, will be discussed in detail. The current challenges and future perspectives of the in-memory computing utilizing flexible and stretchable memristive arrays are presented. These efforts aim to accelerate the development of flexible and stretchable memristive arrays for data computing in advanced intelligent systems, such as electronic skin, soft robotics, and wearable devices.


Sign in / Sign up

Export Citation Format

Share Document