1987 ◽  
Vol 248 (2) ◽  
pp. 619-620 ◽  
Author(s):  
G Tian

By solving simultaneously the equation for ‘uniform binding’ [Albery & Knowles (1976) Biochemistry 15, 5631-5640] and the equation for ‘differential binding’ [Chin (1983) J. Am. Chem. Soc. 105, 6502-6503], I derived the following simple equation for perfect enzymes (with single substrate and single product) under irreversible conditions: K2 = beta(1 + Rs)/1-beta(1 + Rs) where K2 is the internal equilibrium constant and beta is the Brönsted coefficient of the elementary catalytic step, and Rs is defined as [S]0/Ks, with [S]0 being the physiological substrate concentration and Ks being the substrate dissociation constant. The equation suggests that the perfect enzyme can have different internal thermodynamic properties depending on physiological conditions.


2015 ◽  
Vol 60 (3) ◽  
pp. 263-267
Author(s):  
L.A. Bulavin ◽  
◽  
S.V. Khrapatyi ◽  
V.M. Makhlaichuk ◽  

1985 ◽  
Vol 50 (8) ◽  
pp. 1648-1660 ◽  
Author(s):  
Ernest Beinrohr ◽  
Andrej Staško ◽  
Ján Garaj

The oxidation of nickel(II) bis(diethyldithiocarbamate) (NiL2) by N,N,N',N'-tetraethyl thiuramdisulphide (tds) can be described by the equation 2 NiL2 + tds ⇄ 2 NiL3 (NiL3 = tris(diethyldithiocarbamate) nickel(III)). The equilibrium constant of the reaction depends on the polarity of the solvent (4.4 . 10-3 in toluene, 1.3 . 10-3 in chloroform, and 8 . 10-4 in acetone and methanol). The rate constants k1 and k-2 and the ratio k2/k-1 were found for the reaction steps NiL2 + tds ⇄ NiL3 + L. and NiL2 + L. ⇄ NiL3, where L. is the (C2H5)2NCS2. radical.


1981 ◽  
Vol 46 (2) ◽  
pp. 452-456
Author(s):  
Milan Šolc

The successive time derivatives of relative entropy and entropy production for a system with a reversible first-order reaction alternate in sign. It is proved that the relative entropy for reactions with an equilibrium constant smaller than or equal to one is completely monotonic in the whole definition interval, and for reactions with an equilibrium constant larger than one this function is completely monotonic at the beginning of the reaction and near to equilibrium.


1989 ◽  
Vol 54 (2) ◽  
pp. 440-445 ◽  
Author(s):  
Vladimír Macháček ◽  
Alexandr Čegan ◽  
Miloš Sedlák ◽  
Vojeslav Štěrba

The intramolecular nucleophilic addition of N-methyl-N-(2,4,6-trinitrophenyl)glycine anion in methanol-dimethyl sulfoxide mixtures produces spiro[(3-methyl-5-oxazolidinone)-2,1'-(2',4',6'-trinitrobenzenide)]. The spiro adduct has been identified by means of 1H and 13C NMR spectroscopy. This is the first case when the formation of a Meisenheimer adduct with carboxylate ion is observed. Logarithm of the equilibrium constant of adduct formation increases linearly with the mole fraction of dimethyl sulfoxide in its mixture with methanol.


Author(s):  
Dennis Sherwood ◽  
Paul Dalby

Building on the previous chapter, this chapter examines gas phase chemical equilibrium, and the equilibrium constant. This chapter takes a rigorous, yet very clear, ‘first principles’ approach, expressing the total Gibbs free energy of a reaction mixture at any time as the sum of the instantaneous Gibbs free energies of each component, as expressed in terms of the extent-of-reaction. The equilibrium reaction mixture is then defined as the point at which the total system Gibbs free energy is a minimum, from which concepts such as the equilibrium constant emerge. The chapter also explores the temperature dependence of equilibrium, this being one example of Le Chatelier’s principle. Finally, the chapter links thermodynamics to chemical kinetics by showing how the equilibrium constant is the ratio of the forward and backward rate constants. We also introduce the Arrhenius equation, closing with a discussion of the overall effect of temperature on chemical equilibrium.


Sign in / Sign up

Export Citation Format

Share Document