Fault estimation and fault-tolerant control of the FAST NREL 5-MW reference wind turbine using a proportional multi-integral observer

2017 ◽  
Vol 32 (4) ◽  
pp. 568-585 ◽  
Author(s):  
Patrick Kühne ◽  
Florian Pöschke ◽  
Horst Schulte
Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Lei Wang ◽  
Ming Cai ◽  
Hu Zhang ◽  
Fuad Alsaadi ◽  
Liu Chen

The purpose of this paper is to show a novel fault-tolerant tracking control (FTC) strategy with robust fault estimation and compensating for simultaneous actuator sensor faults. Based on the framework of fault-tolerant control, developing an FTC design method for wind turbines is a challenge and, thus, they can tolerate simultaneous pitch actuator and pitch sensor faults having bounded first time derivatives. The paper’s key contribution is proposing a descriptor sliding mode method, in which for establishing a novel augmented descriptor system, with which we can estimate the state of system and reconstruct fault by designing descriptor sliding mode observer, the paper introduces an auxiliary descriptor state vector composed by a system state vector, actuator fault vector, and sensor fault vector. By the optimized method of LMI, the conditions for stability that estimated error dynamics are set up to promote the determination of the parameters designed. With this estimation, and designing a fault-tolerant controller, the system’s stability can be maintained. The effectiveness of the design strategy is verified by implementing the controller in the National Renewable Energy Laboratory’s 5-MW nonlinear, high-fidelity wind turbine model (FAST) and simulating it in MATLAB/Simulink.


Author(s):  
Salman Ijaz ◽  
Mirza T Hamayun ◽  
Lin Yan ◽  
Cun Shi

The research about the dissimilar redundant actuation system has indicated the potential fault-tolerant capability in modern aircraft. This paper proposed a new design methodology to achieve fault-tolerant control of an aircraft equipped with dissimilar actuators and is suffered from vertical tail damage. The proposed design is based on the concept of online control allocation to redistribute the control signals among healthy actuators and integral sliding mode controller is designed to achieve the closed-loop stability in the presence of both component and actuator faults. To cope with severe damage condition, the aircraft is equipped with dissimilar actuators (hydraulic and electrohydraulic actuators). In this paper, the performance degradation due to slower dynamics of electrohydraulic actuator is taken in account. Therefore, the feed-forward compensator is designed for electrohydraulic actuator based on fractional-order control strategy. In case of failure of hydraulic actuator subject to severe damage of vertical tail, an active switching mechanism is developed based on the information of fault estimation unit. Additionally, a severe type of actuator failure so-called actuator saturation or actuator lock in place is also taken into account in this work. The proposed strategy is compared with the existing control strategies in the literature. Simulation results indicate the dominant performance of the proposed scheme. Moreover, the proposed controller is found robust with a certain level of mismatch between the actuator effectiveness level and its estimate.


Sign in / Sign up

Export Citation Format

Share Document