scholarly journals Active Fault-Tolerant Control for Wind Turbine with Simultaneous Actuator and Sensor Faults

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Lei Wang ◽  
Ming Cai ◽  
Hu Zhang ◽  
Fuad Alsaadi ◽  
Liu Chen

The purpose of this paper is to show a novel fault-tolerant tracking control (FTC) strategy with robust fault estimation and compensating for simultaneous actuator sensor faults. Based on the framework of fault-tolerant control, developing an FTC design method for wind turbines is a challenge and, thus, they can tolerate simultaneous pitch actuator and pitch sensor faults having bounded first time derivatives. The paper’s key contribution is proposing a descriptor sliding mode method, in which for establishing a novel augmented descriptor system, with which we can estimate the state of system and reconstruct fault by designing descriptor sliding mode observer, the paper introduces an auxiliary descriptor state vector composed by a system state vector, actuator fault vector, and sensor fault vector. By the optimized method of LMI, the conditions for stability that estimated error dynamics are set up to promote the determination of the parameters designed. With this estimation, and designing a fault-tolerant controller, the system’s stability can be maintained. The effectiveness of the design strategy is verified by implementing the controller in the National Renewable Energy Laboratory’s 5-MW nonlinear, high-fidelity wind turbine model (FAST) and simulating it in MATLAB/Simulink.

Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4109
Author(s):  
Xiaodong Chang ◽  
Jinquan Huang ◽  
Feng Lu

This paper investigated the problem of fault estimation and fault-tolerant control (FTC) against sensor faults for aircraft engines. By applying a second order sliding mode observer (SOSMO) to the engine on-board model, estimations of the system states and sensor faults could be obtained simultaneously, and the result of state estimation was unaffected when using the reduced-order sliding mode system. This result gave rise to the idea to use the estimated states instead of physical sensor signal in the engine close-loop feedback control. Unlike those using passive FTC concepts, the tradeoff between control performance and robustness was inherently unnecessary. Meanwhile, compared to active FTC approaches, because any classical state/output feedback method can be directly applied to the proposed scheme without any controller reconfiguration, extra undesired dynamic responses caused by parameter reconfiguring were avoided. In this paper, the proposed FTC scheme was tested on the nonlinear model of a civil aircraft turbofan engine, and numerical simulation results showed satisfactory sensor FTC performance.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Raouaa Tayari ◽  
Ali Ben Brahim ◽  
Fayçal Ben Hmida ◽  
Anis Sallami

The present paper addresses the problem of robust active fault tolerant control (FTC) for uncertain linear parameter varying (LPV) systems with simultaneous actuator and sensor faults. First, fault estimation (FE) scheme is designed based on two adaptive sliding mode observers (SMO). Second, using the information of simultaneous system state, actuator, and sensor faults, two active FTC are conceived for LPV systems described with polytopic representation as state feedback control and sliding mode control. The stability of closed-loop systems is guaranteed by mean of H∞ performance; sufficient conditions of the proposed methods are derived in LMIs formulation. The performance effectiveness of FTC design is illustrated using a VTOL aircraft system with both sensor and actuator faults as well as disturbances. In addition, comparative simulations are provided to verify the benefits of the proposed methods.


In this paper, the problems of fault estimation and fault-tolerant control for Takagi-Sugeno fuzzy system affected by simultaneous actuator faults, sensor faults and external disturbances are investigated. Firstly, an adaptive fuzzy sliding-mode observer is designed to simultaneously estimate system states and both actuator and sensor faults. Then, based on the online estimation information, a static output feedback fault-tolerant controller is designed to compensate for the effect of faults and to stabilize the closed-loop system. Moreover, sufficient conditions for the existence of the proposed observer and controller with an H∞ performance are derived based on Lyapunov stability theory and expressed in terms of linear matrix inequalities. Finally, a nonlinear inverted pendulum with cart system application is given illustrate the validity of the proposed method.


2013 ◽  
Vol 385-386 ◽  
pp. 808-811
Author(s):  
Chun Lei Zhao ◽  
Yi Nan Xu ◽  
Dong Bi Zhu ◽  
Cheng Zhe Xu

In order to describe the time-delays and faults on continuous nonlinear descriptor system using T-S fuzzy model, an observer is proposed to estimate system states, actuator and sensor faults. A fuzzy state feedback controller is constructed for faults compensations. On the basic of Lyapunov stability theory, the proposed robust fault-tolerant control method ensures the closed-loop system to be robust stability even as faults occur. The actuator and sensor faults can be diagnosed and estimated in 0.2 seconds. The performance of the proposed design method is effective in simulations.


Author(s):  
Salman Ijaz ◽  
Mirza T Hamayun ◽  
Lin Yan ◽  
Cun Shi

The research about the dissimilar redundant actuation system has indicated the potential fault-tolerant capability in modern aircraft. This paper proposed a new design methodology to achieve fault-tolerant control of an aircraft equipped with dissimilar actuators and is suffered from vertical tail damage. The proposed design is based on the concept of online control allocation to redistribute the control signals among healthy actuators and integral sliding mode controller is designed to achieve the closed-loop stability in the presence of both component and actuator faults. To cope with severe damage condition, the aircraft is equipped with dissimilar actuators (hydraulic and electrohydraulic actuators). In this paper, the performance degradation due to slower dynamics of electrohydraulic actuator is taken in account. Therefore, the feed-forward compensator is designed for electrohydraulic actuator based on fractional-order control strategy. In case of failure of hydraulic actuator subject to severe damage of vertical tail, an active switching mechanism is developed based on the information of fault estimation unit. Additionally, a severe type of actuator failure so-called actuator saturation or actuator lock in place is also taken into account in this work. The proposed strategy is compared with the existing control strategies in the literature. Simulation results indicate the dominant performance of the proposed scheme. Moreover, the proposed controller is found robust with a certain level of mismatch between the actuator effectiveness level and its estimate.


Sign in / Sign up

Export Citation Format

Share Document