Optimal Design of a Multifunctional Sandwich Panel With Foam Core: Lightweight Design for Flexural Stiffness and Acoustical Transmission Loss

2014 ◽  
Vol 17 (3) ◽  
pp. 311-318 ◽  
Author(s):  
Pierre Leite ◽  
Marc Thomas ◽  
Frank Simon ◽  
Yves Bréchet
Author(s):  
Pierre Leite ◽  
Marc Thomas ◽  
Frank Simon ◽  
Yves Bréchet

The aim of the present study is to develop specific tools to design optimal panels for multi-objective applications. The objectives considered are stiffness, strength and acoustic insulation at minimum weight. A genetic algorithm is used to design optimal sandwich structures with a good balance of mechanical and acoustical properties. The bending stiffness and mechanical strength of the panel are calculated using beam theory. This analysis is focused on a 3-point bending test, giving the stiffness as the ratio between the concentrated force and the deflection at the center of the sandwich panel. The strength is calculated as the critical force at the onset of plastic deformation. A vibro-acoustical model based on Lagrange’s equations is used to give access to the sound transmission loss of the sandwich panel with anisotropic elastic layers. The main interest is on the mean transmission loss for a diffused incident acoustic field over the frequency range 500–10000Hz. First of all, the optimal design for mechanical properties is assessed at a minimal weight. Quite expectedly, the best solutions are composite-skin with high specific stiffness and soft cores with high shear modulus for a minimum weight. The geometry depends on the required stiffness and strength. The design/properties relationship is discussed by monitoring the evolution of both the material properties and the geometry of the panel. Similarly, a parametric study is performed for acoustical design at minimal weight. In order to maximize the mean transmission loss, it is preferable to lower the critical frequency for which acoustic radiating is maximal. Then, the best solutions for the panel are those who maximize the square root of the density over Young’s modulus. The trade-off between mass and loss transmission is then explored. A comparison between all these solutions provides significant differences in the design with respect to the objectives. In the next step, a multi-objective genetic algorithm is used to find an optimized panel with a good compromise between acoustical and mechanical properties. The optimization is considered with several approaches depending on whether the mass is regarded as the cost function or as a constraint. This study thus provides a preview of the capabilities of multi-objective optimization in design of sandwich panel.


2020 ◽  
Vol 16 (3) ◽  
pp. 617-626 ◽  
Author(s):  
Xu-ke Lan ◽  
Qi Huang ◽  
Tong Zhou ◽  
Shun-shan Feng

2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Zhongchang Qian ◽  
Daoqing Chang ◽  
Bilong Liu ◽  
Ke Liu

An approach on the prediction of sound transmission loss for a finite sandwich panel with honeycomb core is described in the paper. The sandwich panel is treated as orthotropic and the apparent bending stiffness in two principal directions is estimated by means of simple tests on beam elements cut from the sandwich panel. Utilizing orthotropic panel theory, together with the obtained bending stiffness in two directions, the sound transmission loss of simply-supported sandwich panel is predicted by the modal expansion method. Simulation results indicated that dimension, orthotropy, and loss factor may play important roles on sound transmission loss of sandwich panel. The predicted transmission loss is compared with measured data and the agreement is reasonable. This approach may provide an efficient tool to predict the sound transmission loss of finite sandwich panels.


2016 ◽  
Vol 383 ◽  
pp. 221-232 ◽  
Author(s):  
M.P. Arunkumar ◽  
M. Jagadeesh ◽  
Jeyaraj Pitchaimani ◽  
K.V. Gangadharan ◽  
M.C. Lenin Babu

Sign in / Sign up

Export Citation Format

Share Document