Prediction of Sound Transmission Loss for Finite Sandwich Panels Based on a Test Procedure on Beam Elements

2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Zhongchang Qian ◽  
Daoqing Chang ◽  
Bilong Liu ◽  
Ke Liu

An approach on the prediction of sound transmission loss for a finite sandwich panel with honeycomb core is described in the paper. The sandwich panel is treated as orthotropic and the apparent bending stiffness in two principal directions is estimated by means of simple tests on beam elements cut from the sandwich panel. Utilizing orthotropic panel theory, together with the obtained bending stiffness in two directions, the sound transmission loss of simply-supported sandwich panel is predicted by the modal expansion method. Simulation results indicated that dimension, orthotropy, and loss factor may play important roles on sound transmission loss of sandwich panel. The predicted transmission loss is compared with measured data and the agreement is reasonable. This approach may provide an efficient tool to predict the sound transmission loss of finite sandwich panels.

2016 ◽  
Vol 19 (1) ◽  
pp. 26-48 ◽  
Author(s):  
MP Arunkumar ◽  
Jeyaraj Pitchaimani ◽  
KV Gangadharan ◽  
MC Lenin Babu

Sandwich panel which has a design involving acoustic comfort is always denser and larger in size than the design involving mechanical strength. The respective short come can be solved by exploring the impact of core geometry on sound transmission characteristics of sandwich panels. In this aspect, the present work focuses on the study of influence of core geometry on sound transmission characteristics of sandwich panels which are commonly used as aircraft structures. Numerical investigation has been carried out based on a 2D model with equivalent elastic properties. The present study has found that, for a honeycomb core sandwich panel in due consideration to space constraint, better sound transmission characteristics can be achieved with lower core height. It is observed that, for a honeycomb core sandwich panel, one can select cell size as the parameter to reduce the weight with out affecting the sound transmission loss. Triangular core sandwich panel can be used for low frequency application due to its increased transmission loss. In foam core sandwich panel, it is noticed that the effect of face sheet material on sound transmission loss is significant and this can be controlled by varying the density of foam.


2010 ◽  
Vol 132 (1) ◽  
Author(s):  
Tongan Wang ◽  
Shan Li ◽  
Shankar Rajaram ◽  
Steven R. Nutt

A statistical energy analysis (SEA) approach is used to predict the sound transmission loss (STL) of sandwich panels numerically. Unlike conventional SEA studies of the STL of sandwich panels, which consider only the antisymmetric (bending) motion of the sandwich panel, the present approach accounts for both antisymmetric and symmetric (dilatational) motions. Using the consistent higher-order sandwich plate theory, the wave numbers of the waves propagating in the sandwich panel were calculated. Using these wave numbers, the wave speed of the propagating waves, the modal density, and the radiation efficiency of the sandwich panels were determined. Finally, the sound transmission losses of two sandwich panels were calculated and compared with the experimentally measured values, as well as with conventional SEA predictions. The comparisons with the experimental data showed good agreement, and the superiority of the present approach relative to other approaches is discussed and analyzed.


2019 ◽  
Vol 86 ◽  
pp. 714-723 ◽  
Author(s):  
Tao Fu ◽  
Zhaobo Chen ◽  
Hongying Yu ◽  
Xuezhi Zhu ◽  
Yanzheng Zhao

2011 ◽  
Vol 97 (5) ◽  
pp. 869-876 ◽  
Author(s):  
Sathish Kumar ◽  
Leping Feng ◽  
Ulf Orrenius

The sound transmission properties of sandwich panels can be predicted with sufficient degree of accuracy by calculating the wave propagation properties of the structure. This method works well for sandwich panels with isotropic cores but applications to panels with anisotropic cores are hard to find. Honeycomb is an example of anisotropic material which when used as a core, results in a sandwich panel with anisotropic properties. In this paper, honeycomb panels are treated as being orthotropic and the wavenumbers are calculated for the two principle directions. These calculated wavenumbers are validated with the measured wavenumbers estimated from the resonance frequencies of freely hanging honeycomb beams. A combination of wave propagation and standard orthotropic plate theory is used to predict the sound transmission loss of honeycomb panels. These predictions are validated through sound transmission measurements. Passive damping treatment is a common way to reduce structural vibration and sound radiation, but they often have little effect on sound transmission. Visco-elastic damping with a constraining layer is applied to two honeycomb panels with standard and enhanced fluid coupling properties. This enhanced fluid coupling in one of the test panels is due to an extended coincidence range observed from the dispersion curves. The influence of damping treatments on the sound transmission loss of these panels is investigated. Results show that, after the damping treatment, the sound transmission loss of an acoustically bad panel and a normal panel are very similar.


2020 ◽  
Vol 54 (2) ◽  
pp. 127-137
Author(s):  
Rohollah Fallah Madvari ◽  
Mohammad Reza Monazzam ◽  
Mohsen Niknam Sharak and Mohsen Mosa Farkhani

Sign in / Sign up

Export Citation Format

Share Document