In Situ Generated Gold Nanoparticle Hybrid Polymersomes for Water-Soluble Chemotherapeutics: Inhibited Leakage and pH-Responsive Intracellular Release

2017 ◽  
Vol 27 (18) ◽  
pp. 1604981 ◽  
Author(s):  
Jun Fu ◽  
Lina Liang ◽  
Liyan Qiu
Author(s):  
Ya'nan Liu ◽  
Ruixiang Qu ◽  
Xiangyu Li ◽  
Huajun Zhai ◽  
Shuaiheng Zhao ◽  
...  

A catalysis mesh and pH-responsive wettability mesh composite system has been applied for fast separation of oil/water mixtures and full degradation of water-soluble pollutants in situ.


Author(s):  
Ain Uddin ◽  
Weifan Sang ◽  
Yong Gao ◽  
Kyle Plunkett

The synthesis of poly(p-xylylene)s (PPXs) with sidechains containing alkyl bromide functionality, and their post-polymer modification, is described. The PPXs were prepared by a diimide hydrogenation of poly(p-phenylene vinylene)s (PPVs) that were originally synthesized by a Gilch polymerization. The polymer backbone reduction was carried out with hydrazine hydrate in toluene at 80 °C to provide polymers with the sidechain-containing bromide functionality intact. To demonstrate post-polymer modification of the sidechains, the resulting PPX polymers were modified with trimethylamine to form tetraalkylammonium ion functionality and were evaluated as anion conducting membranes. While PPX homopolymers containing tetralkylammonium ions were completely water soluble and not able to form valuable films, PPX copolymers containing mixed tetraalkylammonium ions and hydrophobic chains were capable of film formation and alkaline stability. In addition, an in situ crosslinking process that used N,N,N',N'-tetramethyl-1,6-hexanediamine during the tetraalkylammonium formation of brominated PPX polymers was also evaluated and gave reasonable films with conductivities of ~10 mS-cm-1.


2019 ◽  
Author(s):  
Ain Uddin ◽  
Weifan Sang ◽  
Yong Gao ◽  
Kyle Plunkett

The synthesis of poly(p-xylylene)s (PPXs) with sidechains containing alkyl bromide functionality, and their post-polymer modification, is described. The PPXs were prepared by a diimide hydrogenation of poly(p-phenylene vinylene)s (PPVs) that were originally synthesized by a Gilch polymerization. The polymer backbone reduction was carried out with hydrazine hydrate in toluene at 80 °C to provide polymers with the sidechain-containing bromide functionality intact. To demonstrate post-polymer modification of the sidechains, the resulting PPX polymers were modified with trimethylamine to form tetraalkylammonium ion functionality and were evaluated as anion conducting membranes. While PPX homopolymers containing tetralkylammonium ions were completely water soluble and not able to form valuable films, PPX copolymers containing mixed tetraalkylammonium ions and hydrophobic chains were capable of film formation and alkaline stability. In addition, an in situ crosslinking process that used N,N,N',N'-tetramethyl-1,6-hexanediamine during the tetraalkylammonium formation of brominated PPX polymers was also evaluated and gave reasonable films with conductivities of ~10 mS-cm-1.


2021 ◽  
pp. 2100011
Author(s):  
Alexander T. Fritz ◽  
Jaime C. Cazotti ◽  
Omar Garcia‐Valdez ◽  
Niels M. B. Smeets ◽  
Marc A. Dubé ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. eabe3097
Author(s):  
Hongwei Sheng ◽  
Jingjing Zhou ◽  
Bo Li ◽  
Yuhang He ◽  
Xuetao Zhang ◽  
...  

It has been an outstanding challenge to achieve implantable energy modules that are mechanically soft (compatible with soft organs and tissues), have compact form factors, and are biodegradable (present for a desired time frame to power biodegradable, implantable medical electronics). Here, we present a fully biodegradable and bioabsorbable high-performance supercapacitor implant, which is lightweight and has a thin structure, mechanical flexibility, tunable degradation duration, and biocompatibility. The supercapacitor with a high areal capacitance (112.5 mF cm−2 at 1 mA cm−2) and energy density (15.64 μWh cm−2) uses two-dimensional, amorphous molybdenum oxide (MoOx) flakes as electrodes, which are grown in situ on water-soluble Mo foil using a green electrochemical strategy. Biodegradation behaviors and biocompatibility of the associated materials and the supercapacitor implant are systematically studied. Demonstrations of a supercapacitor implant that powers several electronic devices and that is completely degraded after implantation and absorbed in rat body shed light on its potential uses.


Author(s):  
Ze-Kun Wang ◽  
Jia-Le Lin ◽  
Yun-Chang Zhang ◽  
Chen-Wu Yang ◽  
Ya-Kun Zhao ◽  
...  
Keyword(s):  

Water-soluble hydrazone-connected 3D flexible organic frameworks have been revealed to in situ load and deliver short DNA into normal and cancer cells.


Sign in / Sign up

Export Citation Format

Share Document