scholarly journals Near-Infrared IIb Fluorescence Imaging of Vascular Regeneration with Dynamic Tissue Perfusion Measurement and High Spatial Resolution

2018 ◽  
Vol 28 (36) ◽  
pp. 1803417 ◽  
Author(s):  
Zhuoran Ma ◽  
Mingxi Zhang ◽  
Jingying Yue ◽  
Cynthia Alcazar ◽  
Yeteng Zhong ◽  
...  
Vascular ◽  
2021 ◽  
pp. 170853812110328
Author(s):  
Pim Van den Hoven ◽  
Floris S Weller ◽  
Merel Van De Bent ◽  
Lauren N Goncalves ◽  
Melissa Ruig ◽  
...  

Objectives Current diagnostic modalities for patients with peripheral artery disease (PAD) mainly focus on the macrovascular level. For assessment of tissue perfusion, near-infrared (NIR) fluorescence imaging using indocyanine green (ICG) seems promising. In this prospective cohort study, ICG NIR fluorescence imaging was performed pre- and post-revascularization to assess changes in foot perfusion. Methods ICG NIR fluorescence imaging was performed in 36 patients with PAD pre- and post-intervention. After intravenous bolus injection of 0.1 mg/kg ICG, the camera registered the NIR fluorescence intensity over time on the dorsum of the feet for 15 min using the Quest Spectrum Platform®. Time-intensity curves were plotted for three regions of interest (ROI): (1) the dorsum of the foot, (2) the forefoot, and (3) the hallux. Time-intensity curves were normalized for maximum fluorescence intensity. Extracted parameters were the maximum slope, area under the curve (AUC) for the ingress, and the AUC for the egress. The non-treated contralateral leg was used as a control group. Results Successful revascularization was performed in 32 patients. There was a significant increase for the maximum slope and AUC egress in all three ROIs. The most significant difference was seen for the maximum slope in ROI 3 (3.7%/s to 6.6%/s, p < 0.001). In the control group, no significant differences were seen for the maximum slope and AUC egress in all ROIs. Conclusions This study shows the potential of ICG NIR fluorescence imaging in assessing the effect of revascularization procedures on foot perfusion. Future studies should focus on the use of this technique in predicting favorable outcome of revascularization procedures.


2020 ◽  
Vol 12 (19) ◽  
pp. 3113 ◽  
Author(s):  
Eric F. Vermote ◽  
Sergii Skakun ◽  
Inbal Becker-Reshef ◽  
Keiko Saito

This paper presents a simple and efficient image processing method for estimating the number of coconut trees in the Tonga region using very high spatial resolution data (30 cm) in the blue, green, red and near infrared spectral bands acquired by the WorldView-3 sensor. The method is based on the detection of tree shadows and the further analysis to reject false detection using geometrical properties of the derived segments. The algorithm is evaluated by comparing coconut tree counts derived by an expert through photo-interpretation over 57 randomly distributed (4% sampling rate) segments of 200 m × 200 m over the Vaini region of the Tongatapu island. The number of detected trees agreed within 5% versus validation data. The proposed method was also evaluated over the whole Tonga archipelago by comparing satellite-derived estimates to the 2015 agricultural census data—the total tree counts for both Tonga and Tongatapu agreed within 3%.


2006 ◽  
Vol 2 (S235) ◽  
pp. 405-405
Author(s):  
Marc Huertas-Company ◽  
Daniel Rouan ◽  
Geneviève Soucail ◽  
Olivier Le Fèvre ◽  
Lidia Tasca

AbstractWe present the results of observations of distant galaxies (z ~ 0.8) at high spatial resolution (~0.1"). We observed 7 fields of 1' × 1' with the NACO Adaptive Optics system (VLT) in Ks (2.2μm) band with typical V ~ 14 guide stars and 3h integration time per field. Observed fields are selected within the COSMOS survey area. We analyze the morphologies by means of B/D (Bulge/Disk) decomposition with GIM2D and CAS (Concentration-Asymmetry) estimators for 79 galaxies with magnitudes between Ks = 17 − 23 and classify them in three main morphological types (Late Type, Early Type and Irregulars). We obtain for the first time an estimate of the distribution of galaxy types at redshift z ~ 1 as measured from the near infrared at high spatial resolution.


2020 ◽  
Author(s):  
Mubin He ◽  
Di Wu ◽  
Yuhuang Zhang ◽  
Xiaoxiao Fan ◽  
Hui Lin ◽  
...  

AbstractFluorescence imaging performed in the 1500-1700 nm spectral range (labeled as near-infrared IIb, NIR-IIb) promises high imaging contrast and spatial resolution for its little photon scattering effect and minimum auto-fluorescence. Though inorganic and organic probes have been developed for NIR-IIb bioimaging, most are in preclinical stage, hampering further clinical application. Herein, we showed that indocyanine green (ICG), an US Food and Drug Administration (FDA)-approved agent, exhibited remarkable amount of NIR-IIb emission when dissolved into different protein solutions, including human serum albumin, rat bile, and fetal bovine serum. We performed fluorescence imaging in NIR-IIb window to visualize structures of lymph system, extrahepatic biliary tract and cerebrovascular. Results demonstrated that proteins promoted NIR-IIb emission of ICG in vivo and that NIR-IIb imaging with ICG preserved higher signal-to-background ratio (SBR) and spatial resolution compared with the conventional near-infrared II (NIR-II) fluorescence imaging. Our findings confirm that NIR-IIb fluorescence imaging can be successfully performed using the clinically approved agent ICG. Further clinical application in NIR-IIb region would hopefully be carried out with appropriate ICG-protein solutions.


2019 ◽  
Vol 5 (11) ◽  
pp. 83
Author(s):  
Qimei Zhang ◽  
Anna M. Grabowska ◽  
Philip A. Clarke ◽  
Stephen P. Morgan

The spatial resolution and light detected in fluorescence imaging for small animals are limited by light scattering, absorption and autofluorescence. To address this, novel near-infrared fluorescent contrast agents and imaging configurations have been investigated. In this paper, the influence of the light wavelength and imaging configurations (full-field illumination system and scanning system) on fluorescence imaging are compared quantitatively. The surface radiance for both systems is calculated by modifying the simulation tool Near-Infrared Fluorescence and Spectral Tomography. Fluorescent targets are embedded within a scattering medium at different positions. The surface radiance and spatial resolution are obtained for emission wavelengths between 620 nm and 1000 nm. It was found that the spatial resolution of the scanning system is independent of the tissue optical properties, whereas for full-field illumination, the spatial resolution degrades at longer wavelength. The full width at half maximum obtained by the scanning system is 25% lower than that obtained by the full-field illumination system when the targets are located in the middle of the phantom. The results indicate that although imaging at near-infrared wavelength can achieve a higher surface radiance, it may produce worse spatial resolution.


2007 ◽  
Vol 133 (5) ◽  
pp. 1911-1926 ◽  
Author(s):  
Luciana V. Gramajo ◽  
Barbara A. Whitney ◽  
Scott J. Kenyon ◽  
Mercedes Gómez ◽  
K. M. Merrill

Sign in / Sign up

Export Citation Format

Share Document