scholarly journals Thymus Extracellular Matrix‐Derived Scaffolds Support Graft‐Resident Thymopoiesis and Long‐Term In Vitro Culture of Adult Thymic Epithelial Cells

2021 ◽  
pp. 2010747
Author(s):  
M. Adelaide Asnaghi ◽  
Thomas Barthlott ◽  
Fabiana Gullotta ◽  
Valentina Strusi ◽  
Anna Amovilli ◽  
...  
2000 ◽  
Vol 111 (1) ◽  
pp. 363-370 ◽  
Author(s):  
Katsuto Takenaka ◽  
Mine Harada ◽  
Tomoaki Fujisaki ◽  
Koji Nagafuji ◽  
Shinichi Mizuno ◽  
...  

Apmis ◽  
1989 ◽  
Vol 97 (7-12) ◽  
pp. 926-934 ◽  
Author(s):  
BIRGER CHRISTENSSON ◽  
PETER BIBERFELD ◽  
ROLAND GRAFSTRÖM ◽  
GEORG MATELL

1985 ◽  
Vol 33 (7) ◽  
pp. 655-664 ◽  
Author(s):  
S Berrih ◽  
W Savino ◽  
S Cohen

The immunohistochemical detection of elements of the human thymic extracellular matrix in situ and in vitro is described. In the normal thymus, the intracapsular and intraseptal fibers were strongly labeled by anti-type I collagen antiserum. Basement membranes bordering the capsule, septae, and perivascular spaces were intensely stained by anti-type IV collagen, anti-fibronectin, and anti-laminin sera. In hyperplastic myasthenia gravis thymuses, the major changes consisted of discontinuities of the basement membrane adjacent to clusters of epithelial (keratin-containing) cells, among which an unusual connective framework (densely labeled by all the antisera) was observed. In vitro, most epithelial cells were strongly labeled by antifibronectin serum and to a lesser extent by the anti-type IV collagen and anti-laminin sera. In addition, fibronectin, laminin, and type IV collagen were detected in the intercellular spaces bordering the epithelial cells in culture. Results show that thymic epithelial cells participate in the synthesis of extracellular matrix elements, which as a result of their localization and influence on epithelial cell growth, should be regarded as constitutive components of the thymic microenvironment.


Author(s):  
Milagros Peña‐Zanoni ◽  
Daniela Celeste García ◽  
Mariela Roldán‐Olarte ◽  
Pablo Alberto Valdecantos

2000 ◽  
Vol 111 (1) ◽  
pp. 363-370
Author(s):  
Katsuto Takenaka ◽  
Mine Harada ◽  
Tomoaki Fujisaki ◽  
Koji Nagafuji ◽  
Shinichi Mizuno ◽  
...  

2019 ◽  
Vol 20 (14) ◽  
pp. 3387 ◽  
Author(s):  
Joanna Budna-Tukan ◽  
Agata Światły-Błaszkiewicz ◽  
Piotr Celichowski ◽  
Sandra Kałużna ◽  
Aneta Konwerska ◽  
...  

Oviductal epithelial cells (OECs) actively produce stimulating and protecting factors, favoring survival and viability of gametes and early embryos. The oviduct participates in the initial reproductive events, which strongly depends on adhesion. The analysis of differential gene expression in OECs, during long-term in vitro culture, enables recognition of new molecular markers regulating several processes, including “biological adhesion”. Porcine oviducts were stained with hematoxylin and eosin, as well as with antibodies against epithelial markers. Then, OECs were long-term in vitro cultured and after 24 h, 7, 15, and 30 days of culture were subjected to transcriptomic and proteomic assays. Microarrays were employed to evaluate gene expression, with Matrix-assisted laser desorption/ionization-time of light (MALDI-TOF) mass spectrometry applied to determine the proteome. The results revealed proper morphology of the oviducts and typical epithelial structure of OECs during the culture. From the set of differentially expressed genes (DEGs), we have selected the 130 that encoded proteins detected by MALDI-TOF MS analysis. From this gene pool, 18 significantly enriched gene ontology biological processes (GO BP) terms were extracted. Among them we focused on genes belonging to “biological adhesion” GO BP. It is suggested that increased expression of studied genes can be attributed to the process of intensive secretion of substances that exhibit favorable influence on oviductal environment, which prime gametes adhesion and viability, fertilization, and early embryo journey.


2018 ◽  
Vol 6 (2) ◽  
pp. 39-47 ◽  
Author(s):  
Joanna Budna ◽  
Piotr Celichowski ◽  
Sandra Knap ◽  
Maurycy Jankowski ◽  
Magdalena Magas ◽  
...  

Abstract The process of reproduction requires several factors, leading to successful fertilization of an oocyte by a single spermatozoon. One of them is the complete maturity of an oocyte, which is acquired during long stages of folliculogenesis and oogenesis. Additionally, the oviduct, composed of oviductal epithelial cells (OECs), has a prominent influence on this event through sperm modification and supporting oocyte’s movement towards uterus. OECs were isolated from porcine oviducts. Cells were kept in primary in vitro culture for 30 days. After 24h and on days 7, 15 and 30 cells were harvested, and RNA was isolated. Transcript changes were analyzed using microarrays. Fatty acids biosynthetic process and fatty acids transport ontology groups were selected for analysis and described. Results of this study indicated that majority of genes in both ontology groups were up-regulated on day 7, 15 and 30 of primary in vitro culture. We analyzed genes involved in fatty acids biosynthetic process, including: GGT1, PTGES, INSIG1, SCD, ACSL3, FADS2, FADS1, ACSS2, ALOX5AP, ACADL, SYK, ACACA, HSD17B8, FADS3, OXSM, and transport, including: ABCC2, ACSL4, FABP3, PLA2G3, PPARA, SYK, PPARD, ACACA and P2RX7. Elevated levels of fatty acids in bovine and human oviducts are known to reduce proliferation capacity of OECs and promote inflammatory responses in their microenvironment. Most of measured genes could not be connected to reproductive events. However, the alterations in cellular proliferation, differentiation and genes expression during in vitro long-term culture were significant. Thus, we can treat them as putative markers of changes in OECs physiology.


2018 ◽  
Vol 6 (4) ◽  
pp. 163-173 ◽  
Author(s):  
Agata Chamier-Gliszczyńska ◽  
Maciej Brązert ◽  
Patrycja Sujka-Kordowska ◽  
Małgorzata Popis ◽  
Katarzyna Ożegowska ◽  
...  

AbstractAn oviduct is an essential organ for gamete transport, oocyte maturation, fertilization, spermatozoon capacitation and early embryo development. The epithelium plays an important role in oviduct functioning. The products of secretory cells provide an optimal environment and influence gamete activities and embryonic development. The oviduct physiology changes during the female cycle, thus, the ratio of the secreted molecules in the oviduct fluid differs between phases. In this study, a differential gene expression in porcine oviduct epithelial cells was examined during the long-term primary in vitro culture. The microarray expression analysis revealed 2552 genes, 1537 of which were upregulated and 995 were downregulated after 7 days of culture, with subsequent changes in expression during 30 day-long culture. The obtained genes were classified into 8 GO BP terms, connected with angiogenesis and circulatory system development, extracted by DAVID software. Among all genes, 10 most up-regulated and 10 most down-regulated genes were selected for further investigation. Interactions between genes were indicated by STRING software and REACTOME FIViz application to the Cytoscape 3.6.0 software. Most of the genes belonged to more than one ontology group. Although studied genes are mostly responsible for angiogenesis and circulatory system development, they can also be found to be expressed in processes connected with fertilization and early embryo development. The latter function is focused on more, considering the fact that these genes were expressed in epithelial cells of the fallopian tube which is largely responsible for reproductive processes.


Sign in / Sign up

Export Citation Format

Share Document