Two- and Three-Dimensional Ordered Structures of Hollow Silver Spheres Prepared by Colloidal Crystal Templating

2004 ◽  
Vol 16 (5) ◽  
pp. 417-422 ◽  
Author(s):  
Z. Chen ◽  
P. Zhan ◽  
Z. L. Wang ◽  
J. H. Zhang ◽  
W. Y. Zhang ◽  
...  
Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1331
Author(s):  
Siwei Zhao ◽  
Shaohua Jin ◽  
Huanmin Liu ◽  
Shengfu Li ◽  
Kun Chen

Due to their high absorption coefficient and long carrier lifetime, halide perovskites are promising candidates for photocatalysts. For this study, the antisolvent crystallization protocol and the colloidal crystal templating approach were combined to fabricate the highly crystalline cesium lead bromide perovskite with inverse opal morphology (IO-CsPbBr3). Scanning electron microscopy and transmission electron microscope images demonstrate the three-dimensional well-ordered porous structures of the IO-CsPbBr3 and their single-crystalline features. The presented approach not only provides hierarchical porous structures but also enhances overall crystallinity. When used as catalysts to promote the polymerization of 2,2′,5′,2″-ter-3,4-ethylenedioxythiophene, the highly crystalline IO-CsPbBr3 exhibits a superior photocatalytic performance compared to its polycrystalline counterpart. Furthermore, the morphology and the crystalline structure of the highly crystalline IO-CsPbBr3 are well preserved under photocatalytic conditions. This novel approach enables the preparation of a halide perovskite inverse opal with high crystallinity.


Author(s):  
Weiping Liu ◽  
John W. Sedat ◽  
David A. Agard

Any real world object is three-dimensional. The principle of tomography, which reconstructs the 3-D structure of an object from its 2-D projections of different view angles has found application in many disciplines. Electron Microscopic (EM) tomography on non-ordered structures (e.g., subcellular structures in biology and non-crystalline structures in material science) has been exercised sporadically in the last twenty years or so. As vital as is the 3-D structural information and with no existing alternative 3-D imaging technique to compete in its high resolution range, the technique to date remains the kingdom of a brave few. Its tedious tasks have been preventing it from being a routine tool. One keyword in promoting its popularity is automation: The data collection has been automated in our lab, which can routinely yield a data set of over 100 projections in the matter of a few hours. Now the image processing part is also automated. Such automations finish the job easier, faster and better.


Author(s):  
Xuyang Zhang ◽  
Christian Weinberger ◽  
Sabrina Amrehn ◽  
Xia Wu ◽  
Michael Tiemann ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yue Li ◽  
Xuyang Zhou ◽  
Timoteo Colnaghi ◽  
Ye Wei ◽  
Andreas Marek ◽  
...  

AbstractNanoscale L12-type ordered structures are widely used in face-centered cubic (FCC) alloys to exploit their hardening capacity and thereby improve mechanical properties. These fine-scale particles are typically fully coherent with matrix with the same atomic configuration disregarding chemical species, which makes them challenging to be characterized. Spatial distribution maps (SDMs) are used to probe local order by interrogating the three-dimensional (3D) distribution of atoms within reconstructed atom probe tomography (APT) data. However, it is almost impossible to manually analyze the complete point cloud (>10 million) in search for the partial crystallographic information retained within the data. Here, we proposed an intelligent L12-ordered structure recognition method based on convolutional neural networks (CNNs). The SDMs of a simulated L12-ordered structure and the FCC matrix were firstly generated. These simulated images combined with a small amount of experimental data were used to train a CNN-based L12-ordered structure recognition model. Finally, the approach was successfully applied to reveal the 3D distribution of L12–type δ′–Al3(LiMg) nanoparticles with an average radius of 2.54 nm in a FCC Al-Li-Mg system. The minimum radius of detectable nanodomain is even down to 5 Å. The proposed CNN-APT method is promising to be extended to recognize other nanoscale ordered structures and even more-challenging short-range ordered phenomena in the near future.


2014 ◽  
Vol 1004-1005 ◽  
pp. 670-674 ◽  
Author(s):  
Dian Quan Dong ◽  
Hong Bo Dai ◽  
Jian Guo Zheng

Polystyrene microspheres with 120nm diameter were synthesized by emulsion polymerization and three-dimensionally ordered colloidal crystal templates were obtained by centrifugal sedimentation.Three dimensionally ordered nanopore (3DON) manganese oxide lithium ion-sieve was prepared after filtration, two heated roasting and acid modified by using precursor solution filling the colloidal crystal templates, which was prepared by Lithium salt, manganese salt and citric acid. SEM, XRD, and saturated exchange capacity test were used to characterize the roasting condition, appearance, structure, and ion exchange performance of the oxide. The results showed that, the optimum roasting condition of preparing lithium ion-sieve precursors were found as follows: heating rate at 2°C/min, 300 °C roasting 4h and 800 °C roasting 8h, The 3DON Li4Mn5O12lithium ion sieve precursor has the shape of three-dimensional cross-linked connected into the network structure. Li4Mn5O12was regularly arranged and the hole wall was integrity,average pore size of approximately 90nm.3DON Li4Mn5O12 showed good stability for acid and the retrofit of lithium ion-sieve showed a high selectivity for Li+. The saturated exchange capacity of Li+is 51.98mgLi+/g.


2011 ◽  
Vol 04 (04) ◽  
pp. 327-331 ◽  
Author(s):  
TIANJING ZHANG ◽  
HUJUN CAO ◽  
JUANJUAN PENG ◽  
QIZHEN XIAO ◽  
ZHAOHUI LI ◽  
...  

Three-dimensional ordered macroporous (3DOM) nickel ferrite ( NiFe2O4 ) anode material is synthesized via colloidal crystal template. A Close-packed poly(methyl methacrylate) (PMMA) spheres is used as template. Scanning electron microscopy observations reveal that the obtained 3DOM NiFe2O4 material has uniform spherical macropores with diameter about 140-nm and 20-nm size walls. The cyclic voltammogram and galvanostatic test are employed to evaluate the electrochemical characteristics of the as-prepared NiFe2O4 . It shows high initial discharge capacity (up to 1370 mAh g-1) and reversible capacity of 670 mAh g-1 at the current density of 0.2 mA cm-2. The results suggest that 3DOM nickel ferrite is a good candidate for anode material of lithium ion batteries.


Sign in / Sign up

Export Citation Format

Share Document