scholarly journals Flexible Electronics and Devices as Human‐Machine Interfaces for Medical Robotics

2021 ◽  
pp. 2107902
Author(s):  
Wenzheng Heng ◽  
Samuel Solomon ◽  
Wei Gao
Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 711
Author(s):  
Chunki Yiu ◽  
Tsz Hung Wong ◽  
Yiming Liu ◽  
Kuanming Yao ◽  
Ling Zhao ◽  
...  

Flexible electronics exhibit tremendous potential applications in biosensing and human–machine interfaces for their outstanding mechanical performance and excellent electrical characteristics. In this work, we introduce a soft, skin-integrated strain sensor enabled by a ternary elastomer composite of graphene/carbon nanotube (CNT)/Ecoflex, providing a low-cost skin-like platform for conversion of mechanical motion to electricity and sensing of human activities. The device exhibits high sensitivity (the absolute value of the resistance change rate under a testing strain level, 26) and good mechanical stability (surviving ~hundreds of cycles of repeated stretching). Due to the advanced mechanical design of the metallic electrode, the strain sensor shows excellent mechanical tolerance to pressing, bending, twisting, and stretching. The flexible sensor can be directly mounted onto human skin for detecting mechanical motion, exhibiting its great potential in wearable electronics and human–machine interfaces.


2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


2021 ◽  
Vol 5 (6) ◽  
pp. 2170011
Author(s):  
Hao Sun ◽  
Tong Ji ◽  
Hongjie Bi ◽  
Xin Lin ◽  
Chen Chen ◽  
...  
Keyword(s):  

Nanoscale ◽  
2021 ◽  
Author(s):  
Giuseppe Muscas ◽  
Petra Jönsson ◽  
Ismael Garcia Serrano ◽  
Örjan Vallin ◽  
M. Venkata Kamalakar

The integration of magneto-electric and spintronic sensors to flexible electronics presents massive potential for advancing flexible and wearable technologies. Magnetic nanowires are core components for building such devices. Therefore, realizing...


Sign in / Sign up

Export Citation Format

Share Document