Development of Self-Doped Conjugated Polyelectrolytes with Controlled Work Functions and Application to Hole Transport Layer Materials for High-Performance Organic Solar Cells

2016 ◽  
Vol 3 (12) ◽  
pp. 1500703 ◽  
Author(s):  
Jea Woong Jo ◽  
Jae Woong Jung ◽  
Seunghwan Bae ◽  
Min Jae Ko ◽  
Heesuk Kim ◽  
...  
2013 ◽  
Vol 15 (43) ◽  
pp. 18973 ◽  
Author(s):  
Miaomiao Li ◽  
Wang Ni ◽  
Bin Kan ◽  
Xiangjian Wan ◽  
Long Zhang ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1464
Author(s):  
Kwang Hyun Park ◽  
Sunggyeong Jung ◽  
Jungmo Kim ◽  
Byoung-Min Ko ◽  
Wang-Geun Shim ◽  
...  

The design of photoactive materials and interface engineering between organic/inorganic layers play a critical role in achieving enhanced performance in energy-harvesting devices. Two-dimensional transitional dichalcogenides (TMDs) with excellent optical and electronic properties are promising candidates in this regard. In this study, we demonstrate the fabrication of size-controlled MoS2 quantum dots (QDs) and present fundamental studies of their optical properties and their application as a hole-transport layer (HTL) in organic solar cells (OSCs). Optical and structural analyses reveal that the as-prepared MoS2 QDs show a fluorescence mechanism with respect to the quantum confinement effect and intrinsic/extrinsic states. Moreover, when incorporated into a photovoltaic device, the MoS2 QDs exhibit a significantly enhanced performance (5/10-nanometer QDs: 8.30%/7.80% for PTB7 and 10.40%/10.17% for PTB7-Th, respectively) compared to those of the reference device (7.24% for PTB7 and 9.49% for PTB7-Th). We confirm that the MoS2 QDs clearly offer enhanced transport characteristics ascribed to higher hole-mobility and smoother root mean square (Rq) as a hole-extraction material. This approach can enable significant advances and facilitate a new avenue for realizing high-performance optoelectronic devices.


2018 ◽  
Vol 6 (14) ◽  
pp. 5746-5751 ◽  
Author(s):  
Il Jeon ◽  
Ryohei Sakai ◽  
Seungju Seo ◽  
Graham E. Morse ◽  
Hiroshi Ueno ◽  
...  

PBTZT-stat-BDTT polymer tolerates water after PEDOT:PSS hole-transport layer coating and blends with mixed C60/C70 derivative acceptors to give high air-stability and high performance.


2021 ◽  
pp. 106305
Author(s):  
Yuying Wang ◽  
Na Li ◽  
Mengqi Cui ◽  
Yuting Li ◽  
Xia Tian ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Nguyen Nang Dinh ◽  
Do Ngoc Chung ◽  
Tran Thi Thao ◽  
David Hui

Polymeric nanocomposite films from PEDOT and MEH-PPV embedded with surface modified TiO2nanoparticles for the hole transport layer and emission layer were prepared, respectively, for organic emitting diodes (OLEDs). The composite of MEH-PPV+nc-TiO2was used for organic solar cells (OSCs). The characterization of these nanocomposites and devices showed that electrical (I-Vcharacteristics) and spectroscopic (photoluminescent) properties of conjugate polymers were enhanced by the incorporation of nc-TiO2in the polymers. The organic light emitting diodes made from the nanocomposite films would exhibit a larger photonic efficiency and a longer lasting life. For the organic solar cells made from MEH-PPV+nc-TiO2composite, a fill factor reached a value of about 0.34. Under illumination by light with a power density of 50 mW/cm2, the photoelectrical conversion efficiency was about 0.15% corresponding to an open circuit voltageVoc= 0.126 V and a shortcut circuit current densityJsc= 1.18 mA/cm2.


Sign in / Sign up

Export Citation Format

Share Document