Advanced Lithium-Ion Batteries for Practical Applications: Technology, Development, and Future Perspectives

2018 ◽  
Vol 3 (9) ◽  
pp. 1700376 ◽  
Author(s):  
Sinho Choi ◽  
Guoxiu Wang
2015 ◽  
Vol 3 (7) ◽  
pp. 3962-3967 ◽  
Author(s):  
Xiaolei Wang ◽  
Ge Li ◽  
Fathy M. Hassan ◽  
Matthew Li ◽  
Kun Feng ◽  
...  

High-performance robust CNT–graphene–Si composites are designed as anode materials with enhanced rate capability and excellent cycling stability for lithium-ion batteries. Such an improvement is mainly attributed to the robust sponge-like architecture, which holds great promise in future practical applications.


2021 ◽  
Author(s):  
Yujing Bi ◽  
Deyu Wang

As electric vehicle market growing fast, lithium ion batteries demand is increasing rapidly. Sufficient battery materials supplies including cathode, anode, electrolyte, additives, et al. are required accordingly. Although layered cathode is welcome in high energy density batteries, it is challenging to balance the high energy density and safety beside cost. As consequence, olivine phosphate cathode is coming to the stage center again along with battery technology development. It is important and necessary to revisit the olivine phosphate cathode to understand and support the development of electric vehicles utilized lithium ion batteries. In addition, blend cathode is a good strategy to tailor and balance cathode property and performance. In this chapter, blend cathode using olivine phosphate cathode will be discussed as well as olivine phosphate cathode.


2021 ◽  
Vol 17 ◽  
Author(s):  
Ahmed Alahmed ◽  
Emel Ceyhun Sabır

: The electrodes are the basis for building flexible lithium-ion batteries (FLIBs), and many attempts have been made to develop flexible electrodes with high efficiency in terms of electrical conductivity, chemical and mechanical properties. Most studies showed relatively satisfactory results when testing the electrochemical properties of laboratory-produced electrodes, but most of these electrodes could not meet the expected requirements of flexible electrodes in practical applications. Quantitative production faces many problems that must be overcome, such as the gradual decline in electrochemical performance, deformation of the electrode structure, high production costs, and difficulties in the production process itself. In this research, developments in the production of flexible electrodes, especially those that depend on carbon materials and metal nanoparticles, will be discussed and summarized in this research. The electrochemical performance and stability of the produced flexible electrodes will be compared. The factors contributing to the progress in the production of flexible lithium-ion batteries will also be discussed.


2020 ◽  
Vol 4 (9) ◽  
pp. 4780-4788 ◽  
Author(s):  
Qiang Ma ◽  
Jiakang Qu ◽  
Xiang Chen ◽  
Zhuqing Zhao ◽  
Yan Zhao ◽  
...  

Low-cost feedstocks and rationally designed structures are the keys to determining the lithium-storage performance and practical applications of Si-based anodes for lithium-ion batteries (LIBs).


2019 ◽  
Vol 19 (6) ◽  
pp. 3610-3615 ◽  
Author(s):  
Lifeng Wang ◽  
Kaiyuan Wei ◽  
Pengjun Zhang ◽  
Hong Wang ◽  
Xiujun Qi ◽  
...  

Potassium-ion batteries (PIBs), as one of the alternatives to lithium-ion batteries (LIBs), have attracted considerable attention on account of the affluence and low-cost of potassium. Moreover, CoC2O4 and graphene oxide (GO) have been used very well in lithium-ion batteries. Hence, the hybrid CoC2O4/GO was investigated as a new anode material for PIBs. The hybrid CoC2O4/GO was synthesized by a facile and cheap method combined with supersonic dispersion. Electrochemical measurements reveal that the hybrid CoC2O4/GO delivered an excellent cycling stability of 166 mAh g−1 at 50 mA g−1 and a superior rate capability even at 1 A g−1. These results demonstrate although the cycle ability was insufficient for practical applications, transition-metal oxalates composites can still bring new hope to the development of PIBs.


2020 ◽  
Vol 44 (37) ◽  
pp. 15887-15894
Author(s):  
Jingshi Wang ◽  
Zhigang Shen ◽  
Min Yi

We propose a facile one-step method to prepare a MoS2 composite anode with excellent electrochemical performance and potential for practical applications in lithium ion batteries.


2021 ◽  
Vol 12 (4) ◽  
pp. 256
Author(s):  
Yi Wu ◽  
Wei Li

Accurate capacity estimation can ensure the safe and reliable operation of lithium-ion batteries in practical applications. Recently, deep learning-based capacity estimation methods have demonstrated impressive advances. However, such methods suffer from limited labeled data for training, i.e., the capacity ground-truth of lithium-ion batteries. A capacity estimation method is proposed based on a semi-supervised convolutional neural network (SS-CNN). This method can automatically extract features from battery partial-charge information for capacity estimation. Furthermore, a semi-supervised training strategy is developed to take advantage of the extra unlabeled sample, which can improve the generalization of the model and the accuracy of capacity estimation even in the presence of limited labeled data. Compared with artificial neural networks and convolutional neural networks, the proposed method is demonstrated to improve capacity estimation accuracy.


2019 ◽  
Vol 12 (01) ◽  
pp. 1850094 ◽  
Author(s):  
Yue Lu ◽  
Peng Chang ◽  
Libin Wang ◽  
Joseph Nzabahimana ◽  
Xianluo Hu

Silicon (Si) has been considered as one of the most promising anode materials in lithium-ion battery. However, practical applications of Si are hindered by undesirable cycling stability resulting from poor electrical conductivity and huge volumetric change during cycling process. Here, we prepared a yolk-shell silicon/carbon composite by etching carbon-coated heat-treated silicon monoxide (SiO) precursor. The as-prepared Si/SiOx@Void@C composite of inner silicon/silicon oxides and outer carbon shell with voids between them (Si/SiOx@Void@C), shows impressive cycling stability (1020[Formula: see text]mAh[Formula: see text]g[Formula: see text] at 1[Formula: see text]A[Formula: see text]g[Formula: see text] over 200 cycles) and excellent rate performance (775[Formula: see text]mAh[Formula: see text]g[Formula: see text] at 6[Formula: see text]A[Formula: see text]g[Formula: see text]). The remarkable electrochemical performance is due to the enhanced electrical conductivity originated from the carbon shell and the volume buffer effect of the yolk-shell structure. A combination of the yolk-shell structure with Si/C composites is believed to be a promising way to improve the performance of Si-based materials in lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document