Use of Protease from Bacillus licheniformis as Promiscuous Catalyst for Organic Synthesis: Applications in CC and CN Bond Formation Reactions

2011 ◽  
Vol 353 (13) ◽  
pp. 2345-2353 ◽  
Author(s):  
María López-Iglesias ◽  
Eduardo Busto ◽  
Vicente Gotor ◽  
Vicente Gotor-Fernández
Author(s):  
F.-L. Zhang ◽  
Y.-F. Wang

AbstractBoryl radicals have emerged as powerful radical intermediates in organic synthesis. This review summarizes recently developed transformations involving boryl radical species, including C—B bond formation reactions, reduction reactions, and radical catalysis.


2021 ◽  
Vol 08 ◽  
Author(s):  
Bijeta Mitra ◽  
Pranab Ghosh

: In recent times, microwave assisted chemistry have gained enormous attraction in organic synthesis owing to its versatile advantages such as avoidance of harsh reaction condition, increase of yield, eliminates of by product, shorter reaction time and removal of wastages. Besides, water as a reaction medium further includes more benefit as it eliminates all the drawbacks of toxic solvent which may cause injuries for our mother earth. Furthermore C-C and C-heteroatom bond formation reactions are very significant as most of the drug as well as bioactive compounds contain heterocycles or C-hetero bond which is a key tool of chemistry. This article demonstrates the advancement on the topic of the microwave assisted C-C and C-heteroatom bond formation reactions in aqueous medium.


2020 ◽  
Vol 23 (28) ◽  
pp. 3206-3225 ◽  
Author(s):  
Amol D. Sonawane ◽  
Mamoru Koketsu

: Over the last decades, many methods have been reported for the synthesis of selenium- heterocyclic scaffolds because of their interesting reactivities and applications in the medicinal as well as in the material chemistry. This review describes the recent numerous useful methodologies on C-Se bond formation reactions which were basically carried out at low and room temperature.


2020 ◽  
Vol 24 (20) ◽  
pp. 2293-2340
Author(s):  
Firdoos Ahmad Sofi ◽  
Prasad V. Bharatam

C-N bond formation is a particularly important step in the generation of many biologically relevant heterocyclic molecules. Several methods have been reported for this purpose over the past few decades. Well-known named reactions like Ullmann-Goldberg coupling, Buchwald-Hartwig coupling and Chan-Lam coupling are associated with the C-N bond formation reactions. Several reviews covering this topic have already been published. However, no comprehensive review covering the synthesis of drugs/ lead compounds using the C-N bond formation reactions was reported. In this review, we cover many modern methods of the C-N bond formation reactions, with special emphasis on metal-free and green chemistry methods. We also report specific strategies adopted for the synthesis of drugs, which involve the C-N bond formation reactions. Examples include anti-cancer, antidepressant, anti-inflammatory, anti-atherosclerotic, anti-histaminic, antibiotics, antibacterial, anti-rheumatic, antiepileptic and anti-diabetic agents. Many recently developed lead compounds generated using the C-N bond formation reactions are also covered in this review. Examples include MAP kinase inhibitors, TRKs inhibitors, Polo-like Kinase inhibitors and MPS1 inhibitors.


2014 ◽  
Vol 11 (4) ◽  
pp. 592-604 ◽  
Author(s):  
Natalia Lukasik ◽  
Ewa Wagner-Wysiecka

2020 ◽  
Vol 7 (1) ◽  
pp. 23-39 ◽  
Author(s):  
Kantharaju Kamanna ◽  
Santosh Y. Khatavi

Multi-Component Reactions (MCRs) have emerged as an excellent tool in organic chemistry for the synthesis of various bioactive molecules. Among these, one-pot MCRs are included, in which organic reactants react with domino in a single-step process. This has become an alternative platform for the organic chemists, because of their simple operation, less purification methods, no side product and faster reaction time. One of the important applications of the MCRs can be drawn in carbon- carbon (C-C) and carbon-heteroatom (C-X; X = N, O, S) bond formation, which is extensively used by the organic chemists to generate bioactive or useful material synthesis. Some of the key carbon- carbon bond forming reactions are Grignard, Wittig, Enolate alkylation, Aldol, Claisen condensation, Michael and more organic reactions. Alternatively, carbon-heteroatoms containing C-N, C-O, and C-S bond are also found more important and present in various heterocyclic compounds, which are of biological, pharmaceutical, and material interest. Thus, there is a clear scope for the discovery and development of cleaner reaction, faster reaction rate, atom economy and efficient one-pot synthesis for sustainable production of diverse and structurally complex organic molecules. Reactions that required hours to run completely in a conventional method can now be carried out within minutes. Thus, the application of microwave (MW) radiation in organic synthesis has become more promising considerable amount in resource-friendly and eco-friendly processes. The technique of microwaveassisted organic synthesis (MAOS) has successfully been employed in various material syntheses, such as transition metal-catalyzed cross-coupling, dipolar cycloaddition reaction, biomolecule synthesis, polymer formation, and the nanoparticle synthesis. The application of the microwave-technique in carbon-carbon and carbon-heteroatom bond formations via MCRs with major reported literature examples are discussed in this review.


Author(s):  
Jie Jack Li ◽  
Chris Limberakis ◽  
Derek A. Pflum

Searching for reaction in organic synthesis has been made much easier in the current age of computer databases. However, the dilemma now is which procedure one selects among the ocean of choices. Especially for novices in the laboratory, it becomes a daunting task to decide what reaction conditions to experiment with first in order to have the best chance of success. This collection intends to serve as an "older and wiser lab-mate" one could have by compiling many of the most commonly used experimental procedures in organic synthesis. With chapters that cover such topics as functional group manipulations, oxidation, reduction, and carbon-carbon bond formation, Modern Organic Synthesis in the Laboratory will be useful for both graduate students and professors in organic chemistry and medicinal chemists in the pharmaceutical and agrochemical industries.


Sign in / Sign up

Export Citation Format

Share Document