Collective Magnetism in 2D Polymer Made of C‐Doped Triangular Boron Nitride Nanoflakes

2021 ◽  
pp. 2100028
Author(s):  
Khalid N. Anindya ◽  
Alain Rochefort
Keyword(s):  
Author(s):  
X. Qiu ◽  
A. K. Datye ◽  
T. T. Borek ◽  
R. T. Paine

Boron nitride derived from polymer precursors is of great interest for applications such as fibers, coatings and novel forms such as aerogels. The BN is prepared by the polymerization of functionalized borazine and thermal treatment in nitrogen at 1200°C. The BN powders obtained by this route are invariably trubostratic wherein the sheets of hexagonal BN are randomly oriented to yield the so-called turbostratic modification. Fib 1a and 1b show images of BN powder with the corresponding diffraction pattern in fig. 1c. The (0002) reflection from BN is seen as a diffuse ring with occational spots that come from crystals of BN such as those shown in fig. 1b. The (0002) lattice fringes of BN seen in these powders are the most characteristic indication of the crystallinity of the BN.


Author(s):  
D. L. Medlin ◽  
T. A. Friedmann ◽  
P. B. Mirkarimi ◽  
M. J. Mills ◽  
K. F. McCarty

The allotropes of boron nitride include two sp2-bonded phases with hexagonal and rhombohedral structures (hBN and rBN) and two sp3-bonded phases with cubic (zincblende) and hexagonal (wurtzitic) structures (cBN and wBN) (Fig. 1). Although cBN is synthesized in bulk form by conversion of hBN at high temperatures and pressures, low-pressure synthesis of cBN as a thin film is more difficult and succeeds only when the growing film is simultaneously irradiated with a high flux of ions. Only sp2-bonded material, which generally has a disordered, turbostratic microstructure (tBN), will form in the absence of ion-irradiation. The mechanistic role of the irradiation is not well understood, but recent work suggests that ion-induced compressive film stress may induce the transformation to cBN.Typically, BN films are deposited at temperatures less than 1000°C, a regime for which the structure of the sp2-bonded precursor material dictates the phase and microstructure of the material that forms from conventional (bulk) high pressure treatment.


2021 ◽  
Vol 23 (1) ◽  
pp. 219-228
Author(s):  
Nabanita Saikia ◽  
Mohamed Taha ◽  
Ravindra Pandey

The rational design of self-assembled nanobio-molecular hybrids of peptide nucleic acids with single-wall nanotubes rely on understanding how biomolecules recognize and mediate intermolecular interactions with the nanomaterial's surface.


Author(s):  
Austin M. Evans ◽  
Lucas R. Parent ◽  
Nathan C. Flanders ◽  
Ryan P. Bisbey ◽  
Edon Vitaku ◽  
...  

<div> <div> <div> <p>Polymerizing monomers into periodic two-dimensional (2D) networks provides structurally precise, atomically thin macromolecular sheets linked by robust, covalent bonds. These materials exhibit desirable mechanical, optoelectrotronic, and molecular transport properties derived from their designed structure and permanent porosity. 2D covalent organic frameworks (COFs) offer broad monomer scope, but are generally isolated as polycrystalline, insoluble powders with limited processability. Here we overcome this limitation by controlling 2D COF formation using a two- step procedure. In the first step, 2D COF nanoparticle seeds are prepared with approximate diameters of 30 nm. Next, monomers are slowly added to suppress new nucleation while promoting epitaxial growth on the existing seeds to sizes of several microns. The resulting COF nanoparticles are of exceptional and unprecedented quality, isolated as single crystalline materials with micron-scale domain sizes. These findings advance the controlled synthesis of 2D layered COFs and will enable a broad exploration of synthetic 2D polymer structures and properties. </p> </div> </div> </div>


2017 ◽  
Author(s):  
Austin M. Evans ◽  
Lucas R. Parent ◽  
Nathan C. Flanders ◽  
Ryan P. Bisbey ◽  
Edon Vitaku ◽  
...  

<div> <div> <div> <p>Polymerizing monomers into periodic two-dimensional (2D) networks provides structurally precise, atomically thin macromolecular sheets linked by robust, covalent bonds. These materials exhibit desirable mechanical, optoelectrotronic, and molecular transport properties derived from their designed structure and permanent porosity. 2D covalent organic frameworks (COFs) offer broad monomer scope, but are generally isolated as polycrystalline, insoluble powders with limited processability. Here we overcome this limitation by controlling 2D COF formation using a two- step procedure. In the first step, 2D COF nanoparticle seeds are prepared with approximate diameters of 30 nm. Next, monomers are slowly added to suppress new nucleation while promoting epitaxial growth on the existing seeds to sizes of several microns. The resulting COF nanoparticles are of exceptional and unprecedented quality, isolated as single crystalline materials with micron-scale domain sizes. These findings advance the controlled synthesis of 2D layered COFs and will enable a broad exploration of synthetic 2D polymer structures and properties. </p> </div> </div> </div>


2018 ◽  
Author(s):  
Ravi Shankar ◽  
Sofia Marchesini ◽  
Camille Petit

Porous boron nitride is gaining significant attention for applications in molecular separations, photocatalysis, and drug delivery. All these areas call for a high degree of stability (or a controlled stability) over a range of chemical environments, and particularly under humid conditions. The hydrolytic stability of the various forms of boron nitride, including porous boron nitride, has been sparingly addressed in the literature. Here, we map the physical-chemical properties of the material to its hydrolytic stability for a range of conditions. Using analytical, imaging and spectroscopic techniques, we identify the links between the hydrolytic instability of porous boron nitride and its limited crystallinity, high porosity as well as the presence of oxygen atoms. To address this instability issue, we demonstrate that subjecting the material to a thermal treatment leads to the formation of crystalline domains of h-BN exhibiting a hydrophobic character. The heat-treated sample exhibits enhanced hydrolytic stability, while maintaining a high porosity. This work provides an effective and simple approach to producing stable porous boron nitride structures, and will progress the implementation of the material in applications involving interfacial phenomena.<br>


Sign in / Sign up

Export Citation Format

Share Document