scholarly journals Applications of Surface Modification Technologies in Nanomedicine for Deep Tumor Penetration

2020 ◽  
pp. 2002589
Author(s):  
Zimu Li ◽  
Xiaoting Shan ◽  
Zhidong Chen ◽  
Nansha Gao ◽  
Wenfeng Zeng ◽  
...  





2010 ◽  
Vol 130 (4) ◽  
pp. 331-336 ◽  
Author(s):  
Akihiko Nakayama ◽  
Toru Iwao ◽  
Motoshige Yumoto


2012 ◽  
Vol 132 (3) ◽  
pp. 227-232
Author(s):  
Junya Yokoyama ◽  
Toru Iwao ◽  
Motoshige Yumoto


2001 ◽  
Vol 121 (4) ◽  
pp. 372-377
Author(s):  
Tetsuji Yamanishi ◽  
Yoshihito Hara ◽  
Kingo Azuma ◽  
Etsuo Fujiwara ◽  
Mitsuyasu Yatsuzuka




2014 ◽  
Vol 29 (10) ◽  
pp. 1039
Author(s):  
TAN Man-Lin ◽  
WANG Yan-Tao ◽  
ZHANG Wei-Li ◽  
FU Dong-Ju ◽  
LI Dong-Shuang ◽  
...  


2000 ◽  
Vol 629 ◽  
Author(s):  
John V. St. John ◽  
Patty Wisian-Neilson

ABSTRACTPoly (methylphenylphosphazene) (PMPP) is an example of a unique class of inorganic polymers with alternating – (P=N)– backbones. Chemical modification of bulk PMPP can result in changes of physical properties such as chemical resistance, onset temperature of thermal degradation, elasticity, and flexibility. Surface modification of PMPP allows tailoring of the chemical properties at the polymer interface while maintaining the integrity of the bulk polymer. In this research, PMPP thin films were treated to form carboxylate or carboxylic acid groups at the surface. Surface modification was monitored by following changes in contact angle. The hydrophobic/hydrophilic interactions of carboxylated PMPP surfaces allow for mesoscale interactions of thin polymer films.



Sign in / Sign up

Export Citation Format

Share Document