chemical erosion
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 23)

H-INDEX

33
(FIVE YEARS 3)

2021 ◽  
Vol 14 (10) ◽  
pp. 5999-6023
Author(s):  
Yoshiki Kanzaki ◽  
Dominik Hülse ◽  
Sandra Kirtland Turner ◽  
Andy Ridgwell

Abstract. The preservation of calcium carbonate in marine sediments is central to controlling the alkalinity balance of the ocean and, hence, the ocean–atmosphere partitioning of CO2. To successfully address carbon cycle–climate dynamics on geologic (≫1 kyr) timescales, Earth system models then require an appropriate representation of the primary controls on CaCO3 preservation. At the same time, marine sedimentary carbonates represent a major archive of Earth history, as they have the potential to preserve how seawater chemistry, isotopic composition, and even properties of planktic and benthic ecosystems, change with time. However, changes in preservation and even chemical erosion of previously deposited CaCO3, along with the biogenic reworking of upper portions of sediments, whereby sediment particles are translocated both locally and nonlocally between different depths in the sediments, all act to distort the recorded signal. Numerical models can aid in recovering what the “true” environmental changes might have been, but only if they appropriately account for these processes. Building on a classical 1-D reaction-transport framework, we present a new diagenetic model – IMP (Implicit model of Multiple Particles (and diagenesis)) – that simulates biogeochemical transformations in carbonate-hosted proxy signals by allowing for populations of solid carbonate particles to possess different physicochemical characteristics such as isotopic value, solubility and particle size. The model also utilizes a variable transition matrix to implement different styles of bioturbation. We illustrate the utility of the model for deciphering past environmental changes using several hypothesized transitions of seawater proxies obscured by sediment mixing and chemical erosion. To facilitate the use of IMP, we provide the model in Fortran, MATLAB and Python versions. We described IMP with integration into Earth system models in mind, and we present the description of this coupling of IMP with the “cGENIE.muffin” model in a subsequent paper.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wanjun Ye ◽  
Yuntao Wu ◽  
Yang Bai

As a national development plan, ecological protection of the Yellow River Basin has attracted extensive social attention in recent years. Considering the influence of acid rain on the engineering characteristics of loess in this area, we investigated changes in the physical and mechanical characteristics of remolded loess under the combined action of acid rain and dry-wet cycles by means of triaxial tests, nuclear magnetic resonance spectroscopy, and scanning electron microscopy. The results are as follows: in the acidic environment, the stress-strain relationship of remolded loess undergoes stress hardening after dry-wet cycling. The cohesion and internal friction angle of remolded loess are negatively correlated with the number of cycles. From the multiscale analysis of the dry-wet cycle process under acid rain condition, the T2 spectrum of the test soil has three peaks at the micropore level. With the increasing number of cycles, the spectral area increases gradually, and the sample transitions from small pores to large- and medium-size pores. At the microscopic level, the clay mineral particles among soil particles decrease in size, the contact mode between soil particles develops from stable to unstable, the particles are gradually rounded, and the fractal dimension decreases. Chemical erosion and physical erosion are special features of this experiment. Physical erosion causes particle erosion and pore growth, while chemical erosion includes reactions by feldspar. Together, physical and chemical reactions aggravate the soil deterioration process. These research results have laid a good experimental foundation for the ecological protection of the Yellow River Basin.


2021 ◽  
Author(s):  
Yoshiki Kanzaki ◽  
Dominik Hülse ◽  
Sandra Kirtland Turner ◽  
Andy Ridgwell

Abstract. The preservation of calcium carbonate in marine sediments is central to controlling the alkalinity balance of the ocean and hence the ocean-atmosphere partitioning of CO2. To successfully address carbon cycle-climate dynamics on geologic (>> 1 kyr) time-scales, Earth system models then require an appropriate representation of the primary controls on CaCO3 preservation. At the same time, marine sedimentary carbonates represent a major archive of Earth history, as they have the potential to preserve how seawater chemistry, and isotopic composition, and even properties of planktic and benthic ecosystems, change with time. However, changes in preservation and even chemical erosion of previously deposited CaCO3, together with the biogenic reworking of upper portions of sediments whereby sediment particles are translocated both locally and non-locally between different depths in the sediments, all act to distort the recorded signal. Numerical models can aid in recovering what the “true” environmental changes might have been, but only if they appropriately account for these processes. Building on a classical 1-D reaction-transport framework, we present a new diagenetic model – IMP – that simulates biogeochemical transformations in carbonate-hosted proxy signals by allowing for populations of solid carbonate particles to possess different physicochemical characteristics such as isotopic value, solubility, and particle size. The model also utilizes a variable transition matrix to implement different styles of bioturbation. We illustrate the utility of the model for deciphering past environmental changes using several hypothesized transitions of seawater proxies obscured by sediment mixing and chemical erosion. To facilitate the use of IMP, we provide the model in FORTRAN, MATLAB, and Python versions. We described IMP with integration into Earth system models in mind, and present the description of this coupling of IMP with the “cGENIE.muffin” model in a subsequent paper.


2021 ◽  
Author(s):  
Nuray Kizildag

Ceramic materials are well known for their hardness, inertness, superior mechanical and thermal properties, resistance against chemical erosion and corrosion. Ceramic nanofibers were first manufactured through a combination of electrospinning with sol–gel method in 2002. The electrospun ceramic nanofibers display unprecedented properties such as high surface area, length, thermo-mechanical properties, and hierarchically porous structure which make them candidates for a wide range of applications such as tissue engineering, sensors, water remediation, energy storage, electromagnetic shielding, thermal insulation materials, etc. This chapter focuses on the most recent advances in the applications of ceramic nanofibers.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lizhuang Cui ◽  
Nan Qin ◽  
Shuai Wang ◽  
Xuezhi Feng

In order to study the mechanical properties of sandstone under the coupling action of chemical erosion and freeze-thaw cycles, the fine-grained yellow sandstone in a mining area in Zigong, China, is collected as the research object. The changes in mechanical properties of yellow sandstone under the coupling action of chemical solution erosion and freeze-thaw cycles are analyzed based on uniaxial compression tests (UCTs) and triaxial compression tests (TCTs). The results show that, with the increase in freeze-thaw cycles, the compressive strength, elastic modulus, and cohesion of the sandstone samples decrease with varying degrees. Under constant freeze-thaw cycles, the most serious mechanical properties of degradation are observed in acidic solution, followed by alkaline solution and neutral solution. Under different confining pressures, the compressive strength and elastic modulus of the sandstone samples decrease exponentially with the increase in freeze-thaw cycles. Under the action of the chemical solution erosion and freeze-thaw cycles, the internal friction angle fluctuates around 30°. For the cohesion degradation, 35.4%, 29.3%, and 27.2% degradation are observed under acidic, alkaline, and neutral solutions. Nuclear magnetic resonance imaging shows that the chemical erosion and freeze-thaw cycles both promote the degradation of rock properties from surface to interior; after 45 freeze-thaw cycles, the mechanical properties drop sharply. To properly design rock tunneling support and long-term protection in the cold region, the impact of both freeze-thaw cycles and chemical erosion should be considered.


2021 ◽  
Vol 60 (1) ◽  
pp. 1897-1910
Author(s):  
Hongyang Zhang ◽  
Yadong Sun ◽  
Peng Peng ◽  
Ziyi Song ◽  
Zelin Ding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document