scholarly journals Lithium Metal Batteries: Cross Talk between Transition Metal Cathode and Li Metal Anode: Unraveling Its Influence on the Deposition/Dissolution Behavior and Morphology of Lithium (Adv. Energy Mater. 21/2019)

2019 ◽  
Vol 9 (21) ◽  
pp. 1970078
Author(s):  
Johannes Betz ◽  
Jan‐Paul Brinkmann ◽  
Roman Nölle ◽  
Constantin Lürenbaum ◽  
Martin Kolek ◽  
...  
2019 ◽  
Vol 9 (21) ◽  
pp. 1900574 ◽  
Author(s):  
Johannes Betz ◽  
Jan‐Paul Brinkmann ◽  
Roman Nölle ◽  
Constantin Lürenbaum ◽  
Martin Kolek ◽  
...  

2019 ◽  
Vol 7 (2) ◽  
pp. 594-602 ◽  
Author(s):  
Hongyun Yue ◽  
Yange Yang ◽  
Yan Xiao ◽  
Zhiyuan Dong ◽  
Shuguo Cheng ◽  
...  

The limitation of a high-voltage lithium (Li) metal battery lies in the absence of a robust electrolyte that can endure oxidation loss at a high-voltage cathode and suppress the dendrite growth at a Li metal anode.


2015 ◽  
Vol 3 (14) ◽  
pp. 7207-7209 ◽  
Author(s):  
Xin-Bing Cheng ◽  
Qiang Zhang

A more superior cycling stability and a higher utilization ratio of the Li metal anode have been achieved by additive- and nanostructure-stabilized SEI layers. A profound understanding of the composition, internal structure, and evolution of the SEI film sheds new light on dendrite-free high-efficiency lithium metal batteries.


2021 ◽  
Vol 8 (2) ◽  
pp. 386-389
Author(s):  
Yanan Shi ◽  
Dong Zhou ◽  
Mengqi Li ◽  
Chao Wang ◽  
Weng Wei ◽  
...  

Author(s):  
Ying Zhou ◽  
Kai Zhao ◽  
Jiaming Zhang ◽  
Yu Zhu ◽  
Yue Ma ◽  
...  

Lithium (Li) metal anode has attracted much attention due to its extremely high specific capacity and very low redox potential. However, the serious safety issues and the cycling stability problems...


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Tiancun Liu ◽  
Jinlong Wang ◽  
Yi Xu ◽  
Yifan Zhang ◽  
Yong Wang

Highlights A facile method is adopted to obtain cucumber-like lithiophilic composite skeleton. Massive lithiophilic sites in cucumber-like lithiophilic composite skeleton can promote and guide uniform Li depositions. A unique model of stepwise Li deposition and stripping is determined. Abstract The uncontrolled formation of lithium (Li) dendrites and the unnecessary consumption of electrolyte during the Li plating/stripping process have been major obstacles in developing safe and stable Li metal batteries. Herein, we report a cucumber-like lithiophilic composite skeleton (CLCS) fabricated through a facile oxidation-immersion-reduction method. The stepwise Li deposition and stripping, determined using in situ Raman spectra during the galvanostatic Li charging/discharging process, promote the formation of a dendrite-free Li metal anode. Furthermore, numerous pyridinic N, pyrrolic N, and CuxN sites with excellent lithiophilicity work synergistically to distribute Li ions and suppress the formation of Li dendrites. Owing to these advantages, cells based on CLCS exhibit a high Coulombic efficiency of 97.3% for 700 cycles and an improved lifespan of 2000 h for symmetric cells. The full cells assembled with LiFePO4 (LFP), SeS2 cathodes and CLCS@Li anodes demonstrate high capacities of 110.1 mAh g−1 after 600 cycles at 0.2 A g−1 in CLCS@Li|LFP and 491.8 mAh g−1 after 500 cycles at 1 A g−1 in CLCS@Li|SeS2. The unique design of CLCS may accelerate the application of Li metal anodes in commercial Li metal batteries.


Author(s):  
Ingeborg Treu Røe ◽  
Sondre K. Schnell

Dendrite growth on the lithium metal anode still obstructs a widespread commercialization of high energy density lithium metal batteries. In this work, we investigate how the crystal structure of the...


Author(s):  
Lara Dienemann ◽  
Anil Saigal ◽  
Michael A Zimmerman

Abstract Commercialization of energy-dense lithium metal batteries relies on stable and uniform plating and stripping on the lithium metal anode. In electrochemical-mechanical modeling of solid-state batteries, there is a lack of consideration of specific mechanical properties of battery-grade lithium metal. Defining these characteristics is crucial for understanding how lithium ions plate on the lithium metal anode, how plating and stripping affect deformation of the anode and its interfacing material, and whether dendrites are suppressed. Recent experiments show that the dominant mode of deformation of lithium metal is creep. This study measures the time and temperature dependent mechanics of two thicknesses of commercial lithium anodes inside an industrial dry room, where battery cells are manufactured at high volume. Furthermore, a directional study examines the anisotropic microstructure of 100 µm thick lithium anodes and its effect on bulk creep mechanics. It is shown that these lithium anodes undergo plastic creep as soon as a coin cell is manufactured at a pressure of 0.30 MPa, and achieving thinner lithium foils, a critical goal for solid-state lithium batteries, is correlated to anisotropy in both lithium's microstructure and mechanical properties.


2018 ◽  
Vol 54 (60) ◽  
pp. 8347-8350 ◽  
Author(s):  
Cheng Guo ◽  
Huijun Yang ◽  
Ahmad Naveed ◽  
Yanna Nuli ◽  
Jun Yang ◽  
...  

A versatile interlayer in which AlF3 particles are embedded within carbon nanofibers is reported to stabilize the Li metal anode.


Sign in / Sign up

Export Citation Format

Share Document