Local shell-side heat transfer coefficients and pressure drop in a tubular heat exchanger with orifice baffles

AIChE Journal ◽  
1960 ◽  
Vol 6 (4) ◽  
pp. 669-675 ◽  
Author(s):  
K. S. Lee ◽  
J. G. Knudsen
2006 ◽  
Vol 129 (9) ◽  
pp. 1277-1285 ◽  
Author(s):  
Qiu-wang Wang ◽  
Gong-nan Xie ◽  
Bo-tao Peng ◽  
Min Zeng

The heat transfer and pressure drop of three types of shell-and-tube heat exchangers, one with conventional segmental baffles and the other two with continuous helical baffles, were experimentally measured with water flowing in the tube side and oil flowing in the shell side. The genetic algorithm has been used to determine the coefficients of correlations. It is shown that under the identical mass flow, a heat exchanger with continuous helical baffles offers higher heat transfer coefficients and pressure drop than that of a heat exchanger with segmental baffles, while the shell structure of the side-in-side-out model offers better performance than that of the middle-in-middle-out model. The predicted heat transfer rates and friction factors by means of the genetic algorithm provide a closer fit to experimental data than those determined by regression analysis. The predicted corrections of heat transfer and flow performance in the shell sides may be used in engineering applications and comprehensive study. It is recommended that the genetic algorithm can be used to handle more complicated problems and to obtain the optimal correlations.


Author(s):  
Ankush D. Tharkar ◽  
Shripad P. Mahulikar

Abstract The scope for the heat transfer enhancement in the tubular heat exchanger is high due to its unique property of having two separate convective heat transfer coefficients. The variation of diameter and annular space has a direct effect on the value of convective heat transfer coefficients due to their inverse relation. Thus, the strong emphasis must be given on the influence of diameter and annular space on the thermal characteristics of the tubular heat exchanger. In this numerical analysis, peculiarities in the improvement of the performance parameters are studied with the variation in the value of inlet velocities of the fluids (cold and hot), inner pipe diameter, and annular space for the combination of dimensional range such as miniscale and microscale range. The inner tube diameter is observed to be sensitive to the improvement in the performance parameter. The growth in the performance parameter of the tubular micro heat exchanger is found to be higher when both the values of diameter and annular space are in the microscale range.


Author(s):  
Chunyu Yin ◽  
Xiaoyong Yang ◽  
Jie Wang

Recuperator is one of the key components in the helium-turbine cycle coupled with High Temperature Gas cooled Reactor (HTGR). Synthetically considering the heat transfer coefficients, the pressure drop and installation space of recuperator, it is obviously a trend to use compact heat exchanger as recuperator in nuclear power plant. Recuperator recovers heat from the turbine exhaust gas. It promotes the cycle efficiency over entire power range and in all typical modes including start up and shut down modes. The recuperator’s heat transfer coefficients, height, pressure drop have effect on the recuperator’s effectiveness. The main purpose of this paper is to present the law of heat transfer and flow resistance in laminar flow compact exchanger. Based on the similarity theory, the dimensionless parameters of the plate-fin heat exchanger is given in this paper; and then the the dimensionless analysis of the over-all heat transfer coefficient, recuperator’s effectiveness and flow resistance is presented. Furthermore, relationship between the pressure drop and length is also developed.


2013 ◽  
Vol 634-638 ◽  
pp. 3898-3902
Author(s):  
Liang Zhao ◽  
Zhao Yi Huo ◽  
Lin Mu ◽  
Hong Chao Yin

Considerable research effort has been reported in cost-optimal operation of heat exchanger network. However, most of them neglect the pressure drop influence and assume constant film heat transfer coefficients. Pressure drop of streams are important influencing factors for the performance of heat exchanger network operation. In this paper, a general cost-optimal operation model considering pressure drop constraints and removing the assumption of constant film heat transfer coefficients is proposed. It is necessary to determine the pumping power cost required as part of operating cost function. The extended model is applied to one example taken from previous research, and the results prove that the proposed method can obtain more real optimization results for HEN operational optimization problems.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7705
Author(s):  
Anas F. A. Elbarghthi ◽  
Mohammad Yousef Hdaib ◽  
Václav Dvořák

Ejector refrigeration systems are rapidly evolving and are poised to become one of the most preferred cooling systems in the near future. CO2 transcritical refrigeration systems have inherently high working pressures and discharge temperatures, providing a large volumetric heating capacity. In the current research, the heat ejected from the CO2 gas cooler was proposed as a driving heating source for the compression ejector system, representing the energy supply for the generator in a combined cycle. The local design approach was investigated for the combined plate-type heat exchanger (PHE) via Matlab code integrated with the NIST real gas database. HFO refrigerants (1234ze(E) and 1234yf) were selected to serve as the cold fluid on the generator flowing through three different phases: subcooled liquid, a two-phase mixture, and superheated vapour. The study examines the following: the effectiveness, the heat transfer coefficients, and the pressure drop of the PHE working fluids under variable hot stream pressures, cold stream flow fluxes, and superheated temperatures. The integration revealed that the cold fluid mixture phase dominates the heat transfer coefficients and the pressure drop of the heat exchanger. By increasing the hot stream inlet pressure from 9 MPa to 12 MPa, the cold stream two-phase convection coefficient can be enhanced by 50% and 200% for R1234yf and R1234ze(E), respectively. Conversely, the cold stream two-phase convection coefficient dropped by 17% and 37% for R1234yf and R1234ze(E), respectively. The overall result supports utilising the ejected heat from the CO2 transcritical system, especially at high CO2 inlet pressures and low cold channel flow fluxes. Moreover, R1234ze(E) could be a more suitable working fluid because it possesses a lower pressure drop and bond number.


2016 ◽  
Vol 831 ◽  
pp. 188-197 ◽  
Author(s):  
Janusz T. Cieśliński ◽  
Artur Fiuk ◽  
Wojciech Miciak ◽  
Bartłomiej Siemieńczuk

This study is focused on experimental investigation of a selected type of brazed plate heat exchanger (PHEx). The main aim of the paper was to experimentally check the ability of nanofluids to enhance the performance of PHEx. A typical water-Al2O3 nanofluid was tested and compared to that of the base fluid, i.e. water. Nanoparticles were tested at the concentration of 0.1% and 1% by weight. Impact of the 1 day and 3 days break of operation of the tested PHEx on its performance was of particular interest. Pressure drop in all runs was measured as well. The Wilson approach was applied in order to estimate heat transfer coefficients for the PHEx passages. It was observed, that addition of nanoparticles resulted in deterioration of an overall heat transfer coefficient for the selected PHEx and tested conditions, i.e. temperature range and Reynolds number. Moreover, substantial increase of pressure drop was recorded after each break of operation of the tested PHEx.


1985 ◽  
Vol 107 (2) ◽  
pp. 345-353 ◽  
Author(s):  
E. M. Sparrow ◽  
J. A. Perez

Per-tube heat transfer coefficients and per-compartment and intracompartment pressure drops were measured on the shell side of a shell and tube heat exchanger. The main focus of the work was to determine the response of these quantities to variations in the size of the baffle window; the Reynolds number was also varied parametrically. The pressure measurements showed that the fluid flow is fully developed downstream of the first compartment of the heat exchanger and that the per-compartment pressure drop is constant in the fully developed regime. Within a compartment, the pressure drop in the upstream half is much larger than that in the downstream half. The per-tube heat transfer coefficients vary substantially within a given compartment (on the order of a factor of two), giving rise to a nonuniform thermal loading of the tubes. Row-average and compartment-average heat transfer coefficients were also evaluated. The lowest row-average coefficients were those for the first and last rows in a compartment, while the highest coefficient is that for the row just upstream of the baffle edge. It was demonstrated that the per-tube heat transfer coefficients are streamwise periodic for a module consisting of two consecutive compartments.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1157
Author(s):  
Hamad Mohammad AlHajeri ◽  
Abdulrahman Almutairi ◽  
Mohamad Hamad Al-Hajeri ◽  
Abdulrahman Alenezi ◽  
Rashed ALajmi ◽  
...  

The results of an experimental study to evaluate the characteristics of R-407C thermofluid during condensation in a helically coiled copper tube heat exchanger are presented. The effects of saturation temperature (Tsat), and mass and heat fluxes of refrigerant R-407C on thermal performance and pressure drop were determined. The relationship between the refrigerant wall subcooling and heat transfer coefficients was also investigated. This paper reports the effect of the temperature of the water used as cooling medium on the heat transfer rate of condensing R-407C. The study was conducted with mass flux of R-407C in the range of 100–450 kg/m2s, mass flux of the coolant water in the range of 500–5000 kg/m2s and Tsat of 31 °C, 35 °C, and 39 °C. Compared with a straight smooth tube, the use of the helical coiled (helicoidal) tube increased the condensation rate with a corresponding pressure drop that depended on the value of Tsat of the refrigerant and temperature of the coolant.


Sign in / Sign up

Export Citation Format

Share Document