Velocity and temperature profiles, heat transfer coefficients and residence time distribution of a temperature dependent Herschel–Bulkley fluid in a tubular heat exchanger

2006 ◽  
Vol 76 (4) ◽  
pp. 632-638 ◽  
Author(s):  
C. Ditchfield ◽  
C.C. Tadini ◽  
R.K. Singh ◽  
R.T. Toledo
Author(s):  
Ankush D. Tharkar ◽  
Shripad P. Mahulikar

Abstract The scope for the heat transfer enhancement in the tubular heat exchanger is high due to its unique property of having two separate convective heat transfer coefficients. The variation of diameter and annular space has a direct effect on the value of convective heat transfer coefficients due to their inverse relation. Thus, the strong emphasis must be given on the influence of diameter and annular space on the thermal characteristics of the tubular heat exchanger. In this numerical analysis, peculiarities in the improvement of the performance parameters are studied with the variation in the value of inlet velocities of the fluids (cold and hot), inner pipe diameter, and annular space for the combination of dimensional range such as miniscale and microscale range. The inner tube diameter is observed to be sensitive to the improvement in the performance parameter. The growth in the performance parameter of the tubular micro heat exchanger is found to be higher when both the values of diameter and annular space are in the microscale range.


2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Devanand D. Chillal ◽  
◽  
Uday C. Kapale ◽  
N.R. Banapurmath ◽  
T. M. Yunus Khan ◽  
...  

The work presented is an effort to realize the changes occurring for convective coefficients of heat transfer in STHX fitted with inclined baffles. Effort has been undertaken using Fluent, a commercially available CFD code ona CAD model of small STHX with inclined baffles with cold liquid flowing into the tubes and hot liquid flowing in the shell. Four sets of CFD analysis have been carried out. The hot liquid flow rate through shell compartments varied from 0.2 kg/sec to 0.8 kg/sec in steps of 0.2 kg/sec, while keeping the cold liquid flow condition in tube at 0.4 kg/sec constant. Heat transfer rates, compartment temperatures, and overall heat transfer coefficients, for cold liquid and hot liquid, were studied. The results given by the software using CFD approach were appreciable and comparatively in agreement with the results available by the experimental work, which was undertaken for the same set of inlet pressure conditions, liquid flow rates, and inlet temperatures of liquid for both hot and cold liquids. The experimental output results were also used to validate the results given by the CFD software. The results from the CFD analysis were further used to conclude the effect of baffle inclination on heat duty. The process thus followed also helped realize the effects of baffle inclination on convective heat transfer coefficient of the liquid flow through the shell in an inclined baffle shell and tube heat exchanger. The temperature plots for both cold and hot liquid were also generated for understanding the compartmental temperature distributions inclusive of the inlet and outlet compartments. The heat duty for a heat exchanger has been found to increase with the increase in baffle inclinations from zero degree to 20 degrees. Likewise, the convective heat transfer coefficients have also been found to increase with the increase in baffle inclinations.


2020 ◽  
Vol 10 (15) ◽  
pp. 5225
Author(s):  
Barbara Arevalo-Torres ◽  
Jose L. Lopez-Salinas ◽  
Alejandro J. García-Cuéllar

The curved geometry of a coiled flow inverter (CFI) promotes chaotic mixing through a combination of coils and bends. Besides the heat exchanger geometry, the heat transfer can be enhanced by improving the thermophysical properties of the working fluid. In this work, aqueous solutions of dispersed TiO2 nanometer-sized particles (i.e., nanofluids) were prepared and characterized, and their effects on heat transfer were experimentally investigated in a CFI heat exchanger inserted in a forced convective thermal loop. The physical and transport properties of the nanofluids were measured within the temperature and volume concentration domains. The convective heat transfer coefficients were obtained at Reynolds numbers (NRe) and TiO2 nanoparticle volume concentrations ranging from 1400 to 9500 and 0–1.5 v/v%, respectively. The Nusselt number (NNu) in the CFI containing 1.0 v/v% nanofluid was 41–52% higher than in the CFI containing pure base fluid (i.e., water), while the 1.5 v/v% nanofluid increased the NNu by 4–8% compared to water. Two new correlations to predict the NNu of TiO2–water nanofluids in the CFI at Reynolds numbers of 1400 ≤ NRe ≤ 9500 and nanoparticle volume concentrations ranges of 0.2–1.0 v/v% and 0.2–1.5 v/v% are proposed.


2014 ◽  
Vol 925 ◽  
pp. 625-629 ◽  
Author(s):  
C.S. Oon ◽  
A. Badarudin ◽  
S.N. Kazi ◽  
M. Fadhli

The heat transfer in annular heat exchanger with titanium oxide of 1.0 volume % concentration as the medium of heat exchanger is considered in this study. The heat transfer simulation of the flow is performed by using Computational Fluid Dynamics package, Ansys Fluent. The heat transfer coefficients of water to titanium oxide nanofluid flowing in a horizontal counter-flow heat exchanger under turbulent flow conditions are investigated. The results show that the convective heat transfer coefficient of the nanofluid is slightly higher than that of the base fluid by several percents. The heat transfer coefficient increases with the increase of the mass flow rate of hot water and also the nanofluid.


Sign in / Sign up

Export Citation Format

Share Document