Pressure fluctuation measurements and flow regime transitions in gas-liquid-solid fluidized beds

AIChE Journal ◽  
1986 ◽  
Vol 32 (2) ◽  
pp. 338-340 ◽  
Author(s):  
Liang-Shih Fan ◽  
Sunil Satija ◽  
Keith Wisecarver
2017 ◽  
Vol 314 ◽  
pp. 387-399 ◽  
Author(s):  
Yuli Zhang ◽  
Rui Xiao ◽  
Mao Ye ◽  
Zhongmin Liu

Author(s):  
Matt Zimmer ◽  
Igor A Bolotnov

Abstract New criteria for fully resolving two-phase flow regime transitions using direct numerical simulation with the level set method for interface capturing are proposed. A series of flows chosen to capture small scale interface phenomena are simulated at different grid refinements. These cases include droplet deformation and breakup in a simple shear field, the thin film around a Taylor bubble, and the rise of a bubble towards a free surface. These cases cover the major small scale phenomena observed in two-phase flows: internal recirculation, interface curvature, interface snapping, flow of liquid in thin films, and drainage/snapping of thin films. The results from these simulations and their associated grid studies were used to develop new meshing requirements for simulation of two-phase flow using interface capturing methods, in particular the level set method. When applicable, the code used in this work, PHASTA, was compared to experiments in order to contribute to the ongoing validation process of the code. Results show that when the solver meets these criteria, with the exception of resolving the nanometer scale liquid film between coalescing bubbles, the code is capable of accurately simulating interface topology changes.


Author(s):  
John P. Abraham ◽  
Eph M. Sparrow ◽  
Ryan D. Lovik

The two major fluid flow systems of the human body, blood circulation and respiration, experience timewise pulsations. The variations of the fluid velocity during a pulsation/respiration cycle give rise to transitions in the flow regime during the course of a cycle. At the lowest fluid velocity encountered in the cycle, it is likely that the flow is laminar. As the velocity increases, the laminar regime may transist into a regime called transitional intermittent. Further increases in velocity may lead either to the fully developed intermittent regime or to the fully developed turbulent regime. Once the velocity attains a maximum and begins to decrease, the process of laminarization may be initiated wherein a succession of flow regimes may occur in opposite order to that described in the foregoing. The current capabilities of numerical simulation are limited to a single, user-specified flow regime, either laminar or turbulent. Consequently, the successive spontaneous flow regime transitions encountered in human-body fluid flows have been heretofore beyond the reach of biomedical investigators. Indeed, a thoroughgoing literature review failed to unearth any biomedical-oriented publications in which flow regime transitions have been taken into account. The present investigation is aimed at applying, for the first time, a flow transition model previously developed for steady flows to unsteady flows. The flows to be considered are timewise periodic, with amplitudes, periods, and mean values appropriate to blood flows in large arteries. Special consideration will be given to the magnitudes of the wall shear stresses that are created by such flows, since the accumulation of plaque depends decisively on the shear. The work will also take account of variations in the flow geometry.


Sign in / Sign up

Export Citation Format

Share Document