scholarly journals Variation in the transcriptome of different ecotypes ofArabidopsis thalianareveals signatures of oxidative stress in plant responses to spaceflight

2019 ◽  
Vol 106 (1) ◽  
pp. 123-136 ◽  
Author(s):  
Won-Gyu Choi ◽  
Richard J. Barker ◽  
Su-Hwa Kim ◽  
Sarah J. Swanson ◽  
Simon Gilroy
2016 ◽  
pp. 102-123 ◽  
Author(s):  
Murat Dikilitas ◽  
Sema Karakas ◽  
Abeer Hashem ◽  
E.F. Abd Allah ◽  
Parvaiz Ahmad

Author(s):  
J. Lock ◽  
A. H. Price

It is no longer doubted that calcium functions as a second messenger in animals and plants. This is only possible because cells maintain cytosolic calcium concentrations many orders of magnitude below that of extracellular or organelle calcium. Environmental stimuli are perceived by receptor proteins which trigger transient elevation of cytosolic calcium using internal or external sources. The spatial and temporal distribution and the magnitude of calcium elevation determines the specific cellular response at the molecular level (Cheek 1991). The fine balance of cytosolic calcium homeostasis in animal cells is highly sensitive to oxidising conditions (Duncan 1991). Elevated cytosolic calcium resulting from oxidative perturbation of calcium homeostasis is believed to be responsible for the subsequent cellular injury and death (Nicotera et al. 1991). Transient stimulation of cytosolic calcium in sublethal oxidative stress may be a mechanism by which oxidative attack is perceived by the animal cell (Nicotera et al. 1991). Our understanding of oxidative stress and plant responses to it would be greatly advanced if it can be shown that similar processes occur in plant cells. This paper briefly presents the mechanism of oxidative disruption of calcium homeostasis in animal cells and summarises the evidence that the same scenario applies to plants.


Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 701 ◽  
Author(s):  
Shuang Feng ◽  
Yun Peng ◽  
Enhui Liu ◽  
Hongping Ma ◽  
Kun Qiao ◽  
...  

Vacuolar-type H+-ATPase (V-ATPase), a multisubunit proton pump located on the endomembrane, plays an important role in plant growth. The Arabidopsis thaliana V-ATPase d subunit (VHA-d) consists of two isoforms; AtVHA-d1 and AtVHA-d2. In this study, the function of AtVHA-d2 was investigated. Histochemical analysis revealed that the expression of AtVHA-d1 and AtVHA-d2 was generally highly overlapping in multiple tissues at different developmental stages of Arabidopsis. Subcellular localization revealed that AtVHA-d2 was mainly localized to the vacuole. AtVHA-d2 expression was significantly induced by oxidative stress. Analysis of phenotypic and H2O2 content showed that the atvha-d2 mutant was sensitive to oxidative stress. The noninvasive microtest monitoring demonstrated that the net H+ influx in the atvha-d2 roots was weaker than that in the wild-type under normal conditions. However, oxidative stress resulted in the H+ efflux in atvha-d2 roots, which was significantly different from that in the wild-type. RNA-seq combined with qPCR analysis showed that the expression of several members of the plasma membrane H+-ATPase gene (AtAHA) family in atvha-d2 was significantly different from that in the wild-type. Overall, our results indicate that AtVHA-d2 plays a role in Arabidopsis in response to oxidative stress by affecting H+ flux and AtAHA gene expression.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3161
Author(s):  
Eleonora Ferrari ◽  
Francesco Barbero ◽  
Marti Busquets-Fité ◽  
Mirita Franz-Wachtel ◽  
Heinz-R. Köhler ◽  
...  

The global economic success of man-made nanoscale materials has led to a higher production rate and diversification of emission sources in the environment. For these reasons, novel nanosafety approaches to assess the environmental impact of engineered nanomaterials are required. While studying the potential toxicity of metal nanoparticles (NPs), we realized that gold nanoparticles (AuNPs) have a growth-promoting rather than a stress-inducing effect. In this study we established stable short- and long-term exposition systems for testing plant responses to NPs. Exposure of plants to moderate concentrations of AuNPs resulted in enhanced growth of the plants with longer primary roots, more and longer lateral roots and increased rosette diameter, and reduced oxidative stress responses elicited by the immune-stimulatory PAMP flg22. Our data did not reveal any detrimental effects of AuNPs on plants but clearly showed positive effects on growth, presumably by their protective influence on oxidative stress responses. Differential transcriptomics and proteomics analyses revealed that oxidative stress responses are downregulated whereas growth-promoting genes/proteins are upregulated. These omics datasets after AuNP exposure can now be exploited to study the underlying molecular mechanisms of AuNP-induced growth-promotion.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Weifang Chen ◽  
Tixu Hu ◽  
Jie Ye ◽  
Bing Wang ◽  
Genzhong Liu ◽  
...  

AbstractAscorbic acid (AsA), an important antioxidant and growth regulator, and it is essential for plant development and human health. Specifically, humans have to acquire AsA from dietary sources due to their inability to synthesize it. The AsA biosynthesis pathway in plants has been elucidated, but its regulatory mechanism remains largely unknown. In this report, we biochemically identified a CCAAT-box transcription factor (SlNFYA10) that can bind to the promoter of SlGME1, which encodes GDP-Man-3’,5’-epimerase, a pivotal enzyme in the d-mannose/l-galactose pathway. Importantly, SlNFYA10 simultaneously binds to the promoter of SlGGP1, a downstream gene of SlGME1 in the d-mannose/l-galactose pathway. Binding assays in yeast and functional analyses in plants have confirmed that SlNFYA10 exerts a negative effect on the expression of both SlGME1 and SlGGP1. Transgenic tomato lines overexpressing SlNFYA10 show decreased levels of SlGME1 and SlGGP1 abundance and AsA concentration in their leaves and fruits, accompanied by enhanced sensitivity to oxidative stress. Overall, SlNFYA10 is the first CCAAT-binding factor identified to date to negatively regulate the AsA biosynthetic pathway at multiple sites and modulate plant responses to oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document