Evidence that disruption of cytosolic calcium is critically important in oxidative plant stress

Author(s):  
J. Lock ◽  
A. H. Price

It is no longer doubted that calcium functions as a second messenger in animals and plants. This is only possible because cells maintain cytosolic calcium concentrations many orders of magnitude below that of extracellular or organelle calcium. Environmental stimuli are perceived by receptor proteins which trigger transient elevation of cytosolic calcium using internal or external sources. The spatial and temporal distribution and the magnitude of calcium elevation determines the specific cellular response at the molecular level (Cheek 1991). The fine balance of cytosolic calcium homeostasis in animal cells is highly sensitive to oxidising conditions (Duncan 1991). Elevated cytosolic calcium resulting from oxidative perturbation of calcium homeostasis is believed to be responsible for the subsequent cellular injury and death (Nicotera et al. 1991). Transient stimulation of cytosolic calcium in sublethal oxidative stress may be a mechanism by which oxidative attack is perceived by the animal cell (Nicotera et al. 1991). Our understanding of oxidative stress and plant responses to it would be greatly advanced if it can be shown that similar processes occur in plant cells. This paper briefly presents the mechanism of oxidative disruption of calcium homeostasis in animal cells and summarises the evidence that the same scenario applies to plants.

Cell Calcium ◽  
2016 ◽  
Vol 60 (3) ◽  
pp. 207-217 ◽  
Author(s):  
Alessandra Magenta ◽  
Elena Dellambra ◽  
Roberta Ciarapica ◽  
Maurizio C. Capogrossi

2021 ◽  
Vol 11 (8) ◽  
pp. 693
Author(s):  
Corina Daniela Ene ◽  
Simona Roxana Georgescu ◽  
Mircea Tampa ◽  
Clara Matei ◽  
Cristina Iulia Mitran ◽  
...  

The interaction of reactive oxygen species (ROS) with lipids, proteins, nucleic acids and hydrocarbonates promotes acute and chronic tissue damage, mediates immunomodulation and triggers autoimmunity in systemic lupus erythematous (SLE) patients. The aim of the study was to determine the pathophysiological mechanisms of the oxidative stress-related damage and molecular mechanisms to counteract oxidative stimuli in lupus nephritis. Our study included 38 SLE patients with lupus nephritis (LN group), 44 SLE patients without renal impairment (non-LN group) and 40 healthy volunteers as control group. In the present paper, we evaluated serum lipid peroxidation, DNA oxidation, oxidized proteins, carbohydrate oxidation, and endogenous protective systems. We detected defective DNA repair mechanisms via 8-oxoguanine-DNA-glycosylase (OGG1), the reduced regulatory effect of soluble receptor for advanced glycation end products (sRAGE) in the activation of AGE-RAGE axis, low levels of thiols, disulphide bonds formation and high nitrotyrosination in lupus nephritis. All these data help us to identify more molecular mechanisms to counteract oxidative stress in LN that could permit a more precise assessment of disease prognosis, as well as developing new therapeutic targets.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 304
Author(s):  
Tatyana Savchenko ◽  
Konstantin Tikhonov

Oxidative stress is an integral component of various stress conditions in plants, and this fact largely determines the substantial overlap in physiological and molecular responses to biotic and abiotic environmental challenges. In this review, we discuss the alterations in central metabolism occurring in plants experiencing oxidative stress. To focus on the changes in metabolite profile associated with oxidative stress per se, we primarily analyzed the information generated in the studies based on the exogenous application of agents, inducing oxidative stress, and the analysis of mutants displaying altered oxidative stress response. Despite of the significant variation in oxidative stress responses among different plant species and tissues, the dynamic and transient character of stress-induced changes in metabolites, and the strong dependence of metabolic responses on the intensity of stress, specific characteristic changes in sugars, sugar derivatives, tricarboxylic acid cycle metabolites, and amino acids, associated with adaptation to oxidative stress have been detected. The presented analysis of the available data demonstrates the oxidative stress-induced redistribution of metabolic fluxes targeted at the enhancement of plant stress tolerance through the prevention of ROS accumulation, maintenance of the biosynthesis of indispensable metabolites, and production of protective compounds. This analysis provides a theoretical basis for the selection/generation of plants with improved tolerance to oxidative stress and the development of metabolic markers applicable in research and routine agricultural practice.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Tien-Huang Chen ◽  
Yi-Hsuan Chiang ◽  
Jiun-Nan Hou ◽  
Chih-Chieh Cheng ◽  
Eny Sofiyatun ◽  
...  

Dengue viruses (DENVs) cause dengue fever which is an important mosquito-borne disease in tropical areas. Generally, DENV does not cause cellular damage in mosquito cells. However, alterations in cytosolic calcium ions ([Ca2+]cyt) and the mitochondrial membrane potential (MMP), as well as accumulated reactive oxygen species (ROS), including superoxide anions (O2∙-) and hydrogen peroxide (H2O2), can be detected in C6/36 cells with DENV2 infection. Evident upregulation of BiP/GRP78 also appeared at 24 h postinfection in DENV2-infected C6/36 cells. As expression of BiP/GRP78 mRNA was reduced when the transcription factor X-box-binding protein-1 (XBP1) was knocked down in C6/36 cells, it demonstrated that BiP/GRP78 is the target gene regulated by the XBP1 signal pathway. We further demonstrated that the expression and splicing activity of XBP1 were upregulated in parallel with DENV2 infection in C6/36 cells. In C6/36 cells with BiP/GRP78 overexpression, oxidative stress indicators including [Ca2+]cyt, MMP,O2∙-, and H2O2were all pushed back to normal. Taken together, DENV2 activates XBP1 at earlier stage of infection, followed by upregulating BiP/GRP78 in mosquito cells. This regulatory pathway contributes a cascade in relation to oxidative stress alleviation. The finding provides insights into elucidating how mosquitoes can healthily serve as a vector of arboviruses in nature.


2018 ◽  
Vol 19 (11) ◽  
pp. 3590 ◽  
Author(s):  
Greg Clark ◽  
Stanley Roux

Among the most recently discovered chemical regulators of plant growth and development are extracellular nucleotides, especially extracellular ATP (eATP) and extracellular ADP (eADP). Plant cells release ATP into their extracellular matrix under a variety of different circumstances, and this eATP can then function as an agonist that binds to a specific receptor and induces signaling changes, the earliest of which is an increase in the concentration of cytosolic calcium ([Ca2+]cyt). This initial change is then amplified into downstream-signaling changes that include increased levels of reactive oxygen species and nitric oxide, which ultimately lead to major changes in the growth rate, defense responses, and leaf stomatal apertures of plants. This review presents and discusses the evidence that links receptor activation to increased [Ca2+]cyt and, ultimately, to growth and diverse adaptive changes in plant development. It also discusses the evidence that increased [Ca2+]cyt also enhances the activity of apyrase (nucleoside triphosphate diphosphohydrolase) enzymes that function in multiple subcellular locales to hydrolyze ATP and ADP, and thus limit or terminate the effects of these potent regulators.


1999 ◽  
Vol 31 (4) ◽  
pp. 319-324 ◽  
Author(s):  
Ken Itoh ◽  
Tetsuro Ishii ◽  
Nobunao Wakabayashi ◽  
Masayuki Yamamoto

Author(s):  
Zubair A. Dar ◽  
Bhat Rifat ◽  
Javeed I. A. Bhat ◽  
Asma Absar Bhatti ◽  
Shamsul Haq ◽  
...  

Endophytes are symptomless fungal and bacterial microorganisms found in almost all living plants. They are vital components of plant microbiomes. Endophytes affect plant growth and plant responses to pathogens, herbivores, and environmental change by producing a range of natural products having antifungal, antibacterial, and insecticidal properties. Endophytes have shown particular promise in agriculture particularly as beneficial crop inoculants and are known to enhance abiotic and biotic plant stress tolerance by increasing tolerance to drought and water stress, as well as tolerance to high temperature and high salinity. A better understanding of their plant growth-promoting mechanisms could simplify higher production of energy crops in a more sustainable manner even on marginal land and feed stocks for industrial processes, thus contribute to avoiding conflicts between food and energy production Many endophytes can be exploited to improve the efficiency of phytoremediation as they are found to be resistant to heavy metals and capable of detoxifying organic contaminants.


Sign in / Sign up

Export Citation Format

Share Document