scholarly journals The effects of transcranial direct current stimulation to left DLPFC on attention, inhibition and working memory for people with dementia

2021 ◽  
Vol 17 (S6) ◽  
Author(s):  
Frank Ho‐yin Lai
2015 ◽  
Vol 27 (12) ◽  
pp. 2382-2393 ◽  
Author(s):  
Raquel E. London ◽  
Heleen A. Slagter

Selection mechanisms that dynamically gate only relevant perceptual information for further processing and sustained representation in working memory are critical for goal-directed behavior. We examined whether this gating process can be modulated by anodal transcranial direct current stimulation (tDCS) over left dorsolateral pFC (DLPFC)—a region known to play a key role in working memory and conscious access. Specifically, we examined the effects of tDCS on the magnitude of the so-called “attentional blink” (AB), a deficit in identifying the second of two targets presented in rapid succession. Thirty-four participants performed a standard AB task before (baseline), during, and after 20 min of 1-mA anodal and cathodal tDCS in two separate sessions. On the basis of previous reports linking individual differences in AB magnitude to individual differences in DLPFC activity and on suggestions that effects of tDCS depend on baseline brain activity levels, we hypothesized that anodal tDCS over left DLPFC would modulate the magnitude of the AB as a function of individual baseline AB magnitude. Indeed, individual differences analyses revealed that anodal tDCS decreased the AB in participants with a large baseline AB but increased the AB in participants with a small baseline AB. This effect was only observed during (but not after) stimulation, was not found for cathodal tDCS, and could not be explained by regression to the mean. Notably, the effects of tDCS were not apparent at the group level, highlighting the importance of taking individual variability in performance into account when evaluating the effectiveness of tDCS. These findings support the idea that left DLPFC plays a critical role in the AB and in conscious access more generally. They are also in line with the notion that there is an optimal level of prefrontal activity for cognitive function, with both too little and too much activity hurting performance.


2017 ◽  
Vol 24 (13) ◽  
pp. 1928-1943 ◽  
Author(s):  
Vahid Nejati ◽  
Mohammad Ali Salehinejad ◽  
Michael A. Nitsche ◽  
Asal Najian ◽  
Amir-Homayoun Javadi

Objective: This study examined effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC) on major executive functions (EFs), including response inhibition, executive control, working memory (WM), and cognitive flexibility/task switching in ADHD. Method: ADHD children received (a) left anodal/right cathodal DLPFC tDCS and (b) sham stimulation in Experiment 1 and (a) left anodal DLPFC/right cathodal OFC tDCS, (b) left cathodal DLPFC/right anodal OFC tDCS, and (c) sham stimulation in Experiment 2. The current intensity was 1 mA for 15 min with a 72-hr interval between sessions. Participants underwent Go/No-Go task, N-back test, Wisconsin Card Sorting Test (WCST), and Stroop task after each tDCS condition. Results: Anodal left DLPFC tDCS most clearly affected executive control functions (e.g., WM, interference inhibition), while cathodal left DLPFC tDCS improved inhibitory control. Cognitive flexibility/task switching benefited from combined DLPFC-OFC, but not DLPFC stimulation alone. Conclusion: Task-specific stimulation protocols can improve EFs in ADHD.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 116
Author(s):  
Pia Van Noppen ◽  
Kim van Dun ◽  
Siel Depestele ◽  
Stefanie Verstraelen ◽  
Raf Meesen ◽  
...  

Background: Burnout is characterized by deficiencies in attention and several components of the working memory, of which the lingering effects of impaired attention and executive functions are the most frustrating. We hypothesized that anodal transcranial direct current stimulation (atDCS) over the left dorsolateral prefrontal cortex (DLPFC) can improve the executive control of attention and possibly several other components of working memory in patients with burnout. Methods: This was a randomized double-blind sham-controlled pilot study with two groups. Patients with burnout received three weeks of daily sessions (15 sessions in total) of atDCS or sham stimulation in addition to three weekly sessions of standard behavioral therapy. The primary outcome measure was attention and the central executive of the working memory. Secondary, the effect of atDCS was measured on other components of working memory, on burnout and depression scores, and on quality of life (QoL). Results: We enrolled and randomly assigned 16 patients to a sham or real stimulation group, 15 (7 sham, 8 real) were included in the analysis. atDCS had a significant impact on attention. Post-hoc comparisons also revealed a trend towards more improvement after real tDCS for inhibition and shifting, updating and control, and encoding. Both groups improved on burnout and depression scores. Conclusion: These data provide preliminary evidence for the value of atDCS over the left DLPFC in rehabilitating attention deficits, and possibly also central executive and encoding deficits, in burnout. However, the current study has some limitations, including the sample size and heterogeneous patient population. More elaborate studies are needed to elucidate the specific impact of atDCS over the left DLPFC on burnout. Trial registration: ISRCTN.com (ISRCTN94275121) 17/11/19


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 116
Author(s):  
Pia Van Noppen ◽  
Kim van Dun ◽  
Siel Depestele ◽  
Stefanie Verstraelen ◽  
Raf Meesen ◽  
...  

Background: Burnout is characterized by deficiencies in attention and several components of the working memory. It has been shown that cognitive behavioral therapy can have a positive effect on burnout and depressive symptoms, however, the lingering effects of impaired attention and executive functions are the most frustrating. We hypothesized that anodal transcranial direct current stimulation (atDCS) over the left dorsolateral prefrontal cortex (DLPFC) can improve the executive control of attention and possibly several other components of working memory in patients with burnout. Methods: This was a randomized double-blind sham-controlled pilot study with two groups. Patients with burnout received three weeks of daily sessions (15 sessions in total) of atDCS or sham stimulation in addition to three weekly sessions of standard behavioral therapy. The primary outcome measure was attention and the central executive of the working memory. Secondary, the effect of atDCS was measured on other components of working memory, on burnout and depression scores, and on quality of life (QoL). Results: We enrolled and randomly assigned 16 patients to a sham or real stimulation group, 15 (7 sham, 8 real) were included in the analysis. atDCS had a significant impact on attention. Post-hoc comparisons also revealed a trend towards more improvement after real tDCS for inhibition and shifting, updating and control, and encoding. Both groups improved on burnout and depression scores. Conclusion: These data provide preliminary evidence for the value of atDCS over the left DLPFC in rehabilitating attention deficits, and possibly also central executive and encoding deficits, in burnout. However, the current study has some limitations, including the sample size and heterogeneous patient population. More elaborate studies are needed to elucidate the specific impact of atDCS over the left DLPFC on burnout. Trial registration: ISRCTN.com ( ISRCTN94275121) 17/11/19


2016 ◽  
Vol 28 (8) ◽  
pp. 1063-1089 ◽  
Author(s):  
Lauren E. Mancuso ◽  
Irena P. Ilieva ◽  
Roy H. Hamilton ◽  
Martha J. Farah

Transcranial direct current stimulation (tDCS) has been reported to improve working memory (WM) performance in healthy individuals, suggesting its value as a means of cognitive enhancement. However, recent meta-analyses concluded that tDCS has little or no effect on WM in healthy participants. In this article, we review reasons why these meta-analyses may have underestimated the effect of tDCS on WM and report a more comprehensive and arguably more sensitive meta-analysis. Consistent with our interest in enhancement, we focused on anodal stimulation. Thirty-one articles matched inclusion criteria and were included in four primary meta-analyses assessing the WM effects of anodal stimulation over the left and right dorsolateral pFC (DLPFC) and right parietal lobe as well as left DLPFC stimulation coupled with WM training. These analyses revealed a small but significant effect of left DLPFC stimulation coupled with WM training. Left DLPFC stimulation alone also enhanced WM performance, but the effect was reduced to nonsignificance after correction for publication bias. No other effects were significant, including a variety of tested moderators. Additional meta-analyses were undertaken with study selection criteria based on previous meta-analyses, to reassess the findings from these studies using the analytic methods of this study. These analyses revealed a mix of significant and nonsignificant small effects. We conclude that the primary WM enhancement potential of tDCS probably lies in its use during training.


2018 ◽  
Vol 202 ◽  
pp. 203-209 ◽  
Author(s):  
Irina Papazova ◽  
Wolfgang Strube ◽  
Benedikt Becker ◽  
Bettina Henning ◽  
Tobias Schwippel ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ricky Chow ◽  
Alix Noly-Gandon ◽  
Aline Moussard ◽  
Jennifer D. Ryan ◽  
Claude Alain

AbstractListening to autobiographically-salient music (i.e., music evoking personal memories from the past), and transcranial direct current stimulation (tDCS) have each been suggested to temporarily improve older adults’ subsequent performance on memory tasks. Limited research has investigated the effects of combining both tDCS and music listening together on cognition. The present study examined whether anodal tDCS stimulation over the left dorsolateral prefrontal cortex (2 mA, 20 min) with concurrent listening to autobiographically-salient music amplified subsequent changes in working memory and recognition memory in older adults than either tDCS or music listening alone. In a randomized sham-controlled crossover study, 14 healthy older adults (64–81 years) participated in three neurostimulation conditions: tDCS with music listening (tDCS + Music), tDCS in silence (tDCS-only), or sham-tDCS with music listening (Sham + Music), each separated by at least a week. Working memory was assessed pre- and post-stimulation using a digit span task, and recognition memory was assessed post-stimulation using an auditory word recognition task (WRT) during which electroencephalography (EEG) was recorded. Performance on the backwards digit span showed improvement in tDCS + Music, but not in tDCS-only or Sham + Music conditions. Although no differences in behavioural performance were observed in the auditory WRT, changes in neural correlates underlying recognition memory were observed following tDCS + Music compared to Sham + Music. Findings suggest listening to autobiographically-salient music may amplify the effects of tDCS for working memory, and highlight the potential utility of neurostimulation combined with personalized music to improve cognitive performance in the aging population.


Sign in / Sign up

Export Citation Format

Share Document