scholarly journals Single cell transcriptomic profiling of neurodegeneration mediated by tau in a novel 3D neuron‐astrocyte coculture model

2021 ◽  
Vol 17 (S2) ◽  
Author(s):  
Hannah Rickner ◽  
Lulu Jiang ◽  
Rui Hong ◽  
Benjamin Wolozin ◽  
Christine Cheng
2021 ◽  
Author(s):  
Benjamin Wolozin ◽  
Hannah Rickner ◽  
Lulu Jiang ◽  
Rui Hong ◽  
Nicholas O'Neill ◽  
...  

Abstract Research into neurodegeneration has been hampered by lack of systems that accurately recapitulate neurodegenerative processes1. Propagation of tau through a ‘prion-like’ process has emerged as an important aspect of neurodegenerative diseases including Alzheimer’s disease2. However, molecular mechanism of tau propagation is still largely unknown and a human 3D cellular model is still lacking. Here, we report development of the AstAD system, which uses human iPSCs to create neuron-astrocyte spheroids that incorporates propagation of toxic tau oligomers3,4. Single cell transcriptomic profiling reveals roles for ribosomes, TNF mediated neuroinflammation and heat shock proteins (HSP) as major elements of the disease stress response. Treatment with the HSP90 inhibitor PU-H71, which is selective for the dysfunctional HSP epichaperome, demonstrates reduction of pathology and neurodegeneration in the AstAD system5.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi204-vi204
Author(s):  
Rohit Rao ◽  
Rong Han ◽  
Sean Ogurek ◽  
Lai Man Wu ◽  
Liguo Zhang ◽  
...  

Abstract Tumor-associated macrophages/microglia (TAMs) are prominent microenvironment components in human glioblastoma (GBM) that are potential targets for anti-tumor therapy. However, TAM depletion by CSF1R inhibition showed mixed results in clinical trials. We hypothesized that GBM subtype-specific tumor microenvironment convey distinct sensitivities to TAM targeting. We generated syngeneic PDGFB-driven and RAS-driven GBM models that resemble proneural-like and mesenchymal-like gliomas, and determined the effect of TAM targeting by CSF1R inhibitor PLX3397 on glioma growth and progression. We also investigated the co-targeting of TAMs and angiogenesis on PLX3397-resistant RAS-driven GBM. Using single-cell transcriptomic profiling, we further explored differences in tumor microenvironment compositions and functions between the proneural-like and mesenchymal-like glioma models. We found that the growth of PDGFB-driven tumors was markedly inhibited by PLX3397. In contrast, depletion of TAMs at the early phase accelerated RAS-driven tumor growth and had no effects on other proneural and mesenchymal human GBM models. In addition, PLX3397-resistant RAS-driven tumors did not respond to PI3K signaling inhibition. Single-cell transcriptomic profiling revealed that PDGFB-driven gliomas induced expansion and activation of pro-tumor microglia, whereas mesenchymal RAS-driven gliomas elicited TAMs enriched in pro-inflammatory and angiogenic signaling. Co-targeting of TAMs and angiogenesis decreased cell proliferation and tumor mass in RAS-driven gliomas. Our work identifies functionally distinct TAM subpopulations in the growth of different glioma subtypes. Notably, we uncover a potential responsiveness of resistant mesenchymal-like gliomas to combined anti-angiogenic therapy and CSF1R inhibition. These data highlight the importance of microenvironment landscape characterization to optimally stratify glioma patients for TAM-targeted therapy.


2021 ◽  
Vol 8 ◽  
Author(s):  
Woo Bin Park ◽  
Suji Kim ◽  
Soojin Shim ◽  
Han Sang Yoo

Research has been undertaken to understand the host immune response to Brucella canis infection because of the importance of the disease in the public health field and the clinical field. However, the previous mechanisms governing this infection have not been elucidated. Therefore, in vitro models, which mimic the in vivo infection route using a canine epithelial cell line, D17, and a canine macrophage, DH82, were established to determine these mechanisms by performing an analysis of the transcriptomes in the cells. In this study, a coculture model was constructed by using the D17 cell line and DH82 cell line in a transwell plate. Also, a single cell line culture system using DH82 was performed. After the stimulation of the cells in the two different systems infected with B. canis, the gene expression in the macrophages of the two different systems was analyzed by using RNA-sequencing (RNA-seq), and a transcriptomic analysis was performed by using the Ingenuity Pathway Analysis (IPA). Gene expression patterns were analyzed in the DH82 cell line at 2, 12, and 24 h after the stimulation with B. canis. Changes in the upregulated or downregulated genes showing 2-fold or higher were identified at each time point by comparing with the non-stimulated group. Differentially expressed genes (DEGs) between the two culture models were identified by using the IPA program. Generally, the number of genes expressed in the single cell line culture was higher than the number of genes expressed in the coculture model for all-time points. The expression levels of those genes were higher in the single cell line culture (p < 0.05). This analysis indicated that the immune response-related pathways, especially, the dendritic cell maturation, Triggering receptor expression on myeloid cells 1 (TREM1) signaling, and Toll-like receptor (TLR) signaling pathway, were significantly induced in both the culture systems with higher p-values and z-scores. An increase in the expression level of genes related to the pathways was observed over time. All pathways are commonly associated with a manifestation of pro-inflammatory cytokines and early immune responses. However, the Peroxisome proliferator-activation receptor (PPAR) signaling and Liver X Receptor/Retinoid X Receptor (LXR/RXR) signaling associated with lipid metabolism were reduced. These results indicate that early immune responses might be highly activated in B. canis infection. Therefore, these results might suggest clues to reveal the early immune response of the canine to B. canis infection, particularly TLR signaling.


2021 ◽  
Author(s):  
Bingjie Zhang

scCUT&Tag-pro is a multimodal assay for profiling histone modification coupled with the abundance of surface proteins in single cells. It was developed based on CUT&Tag (Kaya-Okur et al., 2019) and scASAP-seq (Eleni Mimitou et al., 2021). Our approach is compatible with the widely used 10x Genomics Chromium system, and complements recently introduced technologies for simultaneous CUT&Tag and transcriptomic profiling that leverage custom combinatorial indexing workflows. Preprint: https://www.biorxiv.org/content/10.1101/2021.09.13.460120v1.abstract


2021 ◽  
Author(s):  
Rohit Rao ◽  
Rong Han ◽  
Sean Ogurek ◽  
Chengbin Xue ◽  
Lai Man Wu ◽  
...  

Abstract Background Tumor-associated macrophages/microglia (TAMs) are prominent microenvironment components in human glioblastoma (GBM) that are potential targets for anti-tumor therapy. However, TAM depletion by CSF1R inhibition showed mixed results in clinical trials. We hypothesized that GBM subtype-specific tumor microenvironment convey distinct sensitivities to TAM targeting. Methods We generated syngeneic PDGFB-driven and RAS-driven GBM models that resemble proneural-like and mesenchymal-like gliomas, and determined the effect of TAM targeting by CSF1R inhibitor PLX3397 on glioma growth. We also investigated the co-targeting of TAMs and angiogenesis on PLX3397-resistant RAS-driven GBM. Using single-cell transcriptomic profiling, we further explored differences in tumor microenvironment cellular compositions and functions in PDGFB- and RAS-driven gliomas. Results We found that growth of PDGFB-driven tumors was markedly inhibited by PLX3397. In contrast, depletion of TAMs at the early phase accelerated RAS-driven tumor growth and had no effects on other proneural and mesenchymal GBM models. In addition, PLX3397-resistant RAS-driven tumors did not respond to PI3K signaling inhibition. Single-cell transcriptomic profiling revealed that PDGFB-driven gliomas induced expansion and activation of pro-tumor microglia, whereas TAMs in mesenchymal RAS-driven GBM were enriched in pro-inflammatory and angiogenic signaling. Co-targeting of TAMs and angiogenesis decreased cell proliferation and changed the morphology of RAS-driven gliomas. Conclusions Our work identify functionally distinct TAM subpopulations in the growth of different glioma subtypes. Notably, we uncover a potential responsiveness of resistant mesenchymal-like gliomas to combined anti-angiogenic therapy and CSF1R inhibition. These data highlight the importance of characterization of the microenvironment landscape in order to optimally stratify patients for TAM-targeted therapy.


2018 ◽  
Author(s):  
Mukta Dutta ◽  
Tuuli Saloranta ◽  
Inah Golez ◽  
Kerry Deutsch ◽  
Cara Lord ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document