tlr signaling
Recently Published Documents


TOTAL DOCUMENTS

517
(FIVE YEARS 101)

H-INDEX

75
(FIVE YEARS 6)

mBio ◽  
2021 ◽  
Author(s):  
Mohammad Adnan Siddiqui ◽  
Masahiro Yamashita

Innate immune activation is a hallmark of HIV-1 pathogenesis. Thus, it is critical to understand how HIV-1 infection elicits innate immune responses.


2021 ◽  
Vol 22 (23) ◽  
pp. 12764
Author(s):  
Wook-Young Baek ◽  
Yang-Seon Choi ◽  
Sang-Won Lee ◽  
In-Ok Son ◽  
Ki-Woong Jeon ◽  
...  

Toll-like receptors (TLRs) play a major role in the innate immune system. Several studies have shown the regulatory effects of TLR-mediated pathways on immune and inflammatory diseases. Dysregulated functions of TLRs within the endosomal compartment, including TLR7/9 trafficking, may cause systemic lupus erythematosus (SLE). TLR signaling pathways are fine-tuned by Toll/interleukin-1 receptor (TIR) domain-containing adapters, leading to interferon (IFN)-α production. This study describes a TLR inhibitor peptide 1 (TIP1) that primarily suppresses the downstream signaling mediated by TIR domain-containing adapters in an animal model of lupus and patients with SLE. The expression of most downstream proteins of the TLR7/9/myeloid differentiation factor 88 (MyD88)/IFN regulatory factor 7 signaling was downregulated in major tissues such as the kidney, spleen, and lymph nodes of treated mice. Furthermore, the pathological analysis of the kidney tissue confirmed that TIP1 could improve inflammation in MRL/lpr mice. TIP1 treatment downregulated many downstream proteins associated with TLR signaling, such as MyD88, interleukin-1 receptor-associated kinase, tumor necrosis factor receptor-associated factor 6, and IFN-α, in the peripheral blood mononuclear cells of patients with SLE. In conclusion, our data suggest that TIP1 can serve as a potential candidate for the treatment of SLE.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1737
Author(s):  
Julia María Coronas-Serna ◽  
Elba del Val ◽  
Jonathan C. Kagan ◽  
María Molina ◽  
Víctor J. Cid

Toll-like receptor (TLR) signaling is key to detect pathogens and initiating inflammation. Ligand recognition triggers the assembly of supramolecular organizing centers (SMOCs) consisting of large complexes composed of multiple subunits. Building such signaling hubs relies on Toll Interleukin-1 Receptor (TIR) and Death Domain (DD) protein-protein interaction domains. We have expressed TIR domain-containing components of the human myddosome (TIRAP and MyD88) and triffosome (TRAM and TRIF) SMOCs in Saccharomyces cerevisiae, as a platform for their study. Interactions between the TLR4 TIR domain, TIRAP, and MyD88 were recapitulated in yeast. Human TIRAP decorated the yeast plasma membrane (PM), except for the bud neck, whereas MyD88 was found at cytoplasmic spots, which were consistent with endoplasmic reticulum (ER)-mitochondria junctions, as evidenced by co-localization with Mmm1 and Mdm34, components of the ER and Mitochondria Encounter Structures (ERMES). The formation of MyD88-TIRAP foci at the yeast PM was reinforced by co-expression of a membrane-bound TLR4 TIR domain. Mutations in essential residues of their TIR domains aborted MyD88 recruitment by TIRAP, but their respective subcellular localizations were unaltered. TRAM and TRIF, however, did not co-localize in yeast. TRAM assembled long PM-bound filaments that were disrupted by co-expression of the TLR4 TIR domain. Our results evidence that the yeast model can be exploited to study the interactions and subcellular localization of human SMOC components in vivo.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1218
Author(s):  
Zhao Lv ◽  
Yazhou Hu ◽  
Jin Tan ◽  
Xiaoqing Wang ◽  
Xiaoyan Liu ◽  
...  

Although hemorrhagic sepsis caused by Aeromonas hydrophila infection is the dominant disease in the aquaculture of Chinese soft-shelled turtle, information on its molecular pathology is seriously limited. In this study, ninety turtles intraperitoneally injected with A. hydrophila exhibited two different phenotypes based on the pathological symptoms, referred to as active and inactive turtles. Comparative transcriptomes of liver and spleen from these two groups at 6, 24, and 72 hours post-injection (hpi) were further analyzed. The results showed that cytokine–cytokine receptor interaction, PRRs mediated signaling pathway, apoptosis, and phagocytosis enriched in active and inactive turtles were significantly different. Pro-inflammatory cytokines, the TLR signaling pathway, NLR signaling pathway, and RLR signaling pathway mediating cytokine expression, and apoptosis-related genes, were significantly up-regulated in inactive turtles at the early stage (6 hpi). The significant up-regulation of phagocytosis-related genes occurred at 24 hpi in inactive turtles and relatively lagged behind those in active turtles. The anti-inflammatory cytokine, IL10, was significantly up-regulated during the tested periods (6, 24, and 72 hpi) in active turtles. These findings offer valuable information for the understanding of molecular immunopathogenesis after A. hydrophila infection, and facilitate further investigations on strategies against hemorrhagic sepsis in Chinese soft-shelled turtle T. sinensis.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1175-1175
Author(s):  
Tzu-Chieh Ho ◽  
Hiroki Kawano ◽  
Mark W. LaMere ◽  
Naxin Guo ◽  
Yu-Chiao Chiu ◽  
...  

Abstract Current treatment options for relapsed acute myeloid leukemia (AML) are limited and ineffective for the majority of patients. In AML, primitive leukemia stem cells (LSCs) and pre-leukemic populations are able to maintain the disease and drive relapse. Thus, therapies targeting LSC populations may increase the overall survival of AML patients. In this study, we aim to identify the drivers favoring LSC expansion following treatment and relapse and develop potential therapies for AML. The transcriptome analyses of 12 pairs of functionally defined LSC fractions at diagnosis and relapse revealed significant changes of IL-1 signaling in AML patients. We demonstrated that the protein expression levels of interleukin-1 receptor type I (IL1R1) and its complex member interleukin-1 receptor accessory protein (IL1RAP) were both up-regulated in human leukemia stem and progenitor cells (LSPCs) at diagnosis or in relapse compared to normal hematopoietic stem and progenitor cells (HSPCs). Knockdown of IL1R1 and IL1RAP suppressed the clonogenicity and engraftment growth of primary human AML cells but showed low impacts on HSPCs in the normal bone marrow. Additionally, knockout of IL1R1 in leukemia MLL-AF9 mice significantly reduced the LSC frequency and prolonged the overall survival rate. To target IL-1/TLR signaling in LSCs, we performed iterative structure-activity relationship (SAR) guided medicinal chemistry, in silico modeling and leukemia cell line reporter assays to screen and identify a novel interleukin-1 receptor-associated kinase 1/4 (IRAK1/4) inhibitor (termed UR241-2). UR241-2 robustly inhibits IL-1/TLR signaling in AML cells including the activation of NF-κB following IL-1 stimulation. UR241-2 repressed LSPC function as assessed by colony-forming unit assays in primary human AML cells at diagnosis and in relapse while minimally impacting normal HSPC function. Taken together, our findings demonstrate the important role of IL-1/TLR signaling in supporting AML LSC expansion following treatment and relapse and suggest that targeting IL-1/TLR signaling using the novel IRAK1/4 inhibitor, UR241-2, can target LSC function to improve patient outcomes in AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1081-1081
Author(s):  
Vu L. Tran ◽  
Kirby D. Johnson ◽  
Koichi R. Katsumura ◽  
Emery H. Bresnick

Abstract Cell type-specific transcription factors governing hematopoietic stem and progenitor cell transitions establish networks containing hundreds of genes and proteins. Network complexity renders it challenging to discover essential versus modulatory or redundant components. This scenario is exemplified by GATA2 mechanisms that control hematopoiesis during embryogenesis. Loss of a far upstream Gata2 enhancer (-77) disrupts the GATA2-dependent genetic network governing hematopoietic progenitor cell differentiation (Johnson KD. et al., Sci. Adv., 2015). The aberrant network includes the transcription factor Interferon Regulatory Factor-8 and a host of innate immune regulators, including Toll-like receptors (TLRs) (Johnson KD. et al., J. Exp. Med., 2020). Mutant embryonic progenitors lose the capacity to balance production of diverse hematopoietic progeny and generate excessive monocytic progeny. As IRF8 is vitally important for monocytic and dendritic cell differentiation (Yanez A. and Goodridge H., Curr. Opin. Hematol., 2016), we asked whether IRF8 is essential, contributory, or inconsequential. Using a double-mutant genetic rescue in vivo system, we demonstrated that reducing Irf8, in the context of the -77 mutant allele, reversed granulocytic deficiencies and the excessive accumulation of dendritic cell-committed progenitors. In -77 -/- E14.5 fetal livers, monocyte progenitors (MPs) increased 2.3-fold (P = 0.006), granulocyte progenitors (GPs) decreased 2.2-fold (P = 0.003) and common dendritic cell progenitors (CDPs) increased 10.2-fold (P = 0.021) relative to wildtype littermates. Ablating Irf8 in -77 mutants (-77 -/-; Irf8-/-) restored MPs and CDPs to wildtype levels and reversed the GP deficiency; further increasing GPs 4.2-fold relative to wildtype (P = 0.0009). Despite many dysregulated components that control vital transcriptional, signaling and immune processes, the aberrant elevation of a single transcription factor deconstructed the embryonic hematopoiesis program. We analyzed the mechanistic and biological implications of IRF8 dysregulation concomitant with ectopic upregulation of other innate immune genes (including Toll-like receptors (TLRs) in GATA2-deficient embryonic progenitors. In principle, such genes might function upstream, downstream, or in parallel with IRF8. Based on TLR upregulation and TLR roles in progenitor mechanisms (Nagai Y. et al., Immunity, 2006; Schuettpelz L. et al., Leukemia, 2014; Caiado F. et al., J. Exp. Med., 2021), we tested whether GATA2 deficiency in embryonic progenitors impacts cellular responsiveness to TLR ligands. Wild type and -77 enhancer-mutant progenitors were treated with increasing concentrations of the TLR1/2 ligand Pam 3CSK 4. The mutant progenitors were hypersensitive to Pam 3CSK 4, which resulted in supra-physiological induction of Tnf expression (2.8-fold at 34 nM, P = 0.004; 3.2-fold at 68 nM, P = 0.0003). Quantitative analyses indicated that hypersensitivity reflected increased Pam 3CSK 4 efficacy, but not potency. GATA2 re-expression in the mutant progenitors attenuated the elevated IRF8 expression and TLR signaling, normalizing Tnf and Ccl3 expression to a level comparable to that of wild type progenitors. In GATA2-rescued mutant progenitors, Tnf and Ccl3 expression decreased 3.9-fold (P = 0.005) and 2.5-fold (P = 0.047), respectively. Thus, GATA2 suppresses TLR signaling in embryonic progenitors. Ongoing studies are elucidating the mechanistic interconnections between IRF8- and TLR-dependent inflammatory networks in GATA2 deficiency during embryonic and adult hematopoiesis in cell populations and single cells, relationships between murine and human mechanisms, and the impact of targeted interventions that modulate these mechanisms. Disclosures No relevant conflicts of interest to declare.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2478
Author(s):  
Ying Li ◽  
Juan Qin ◽  
Yinghui Cheng ◽  
Yuqing Ai ◽  
Zhiyi Han ◽  
...  

Polysaccharide from marine shellfish has various bioactivities. In this study, the effects of polysaccharide from Patinopecten yessoensis skirt (PS) on boosting immune response in mice were evaluated, and the potential mechanisms were explored. The results showed that PS administration effectively increased the serum IgG and IgM levels, implying that PS had immune response-boosting properties. Moreover, PS administration could modulate the composition of the gut microbiota, and significantly improve short-chain fatty acids (SCFAs) metabolism, especially butyrate metabolism. Of note, the expression of the Tlr2, Tlr7, MyD88, Tnfa, and Il1b genes in toll-like receptor (TLR) signaling pathway was significantly increased. In summary, PS could boost immune response by modulating the gut microbiota and SCFAs metabolism correlating with the activation of the TLR signaling pathway. Therefore, PS can be developed as a special ingredient for functional product.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2065
Author(s):  
Olivia Luise Gern ◽  
Felix Mulenge ◽  
Andreas Pavlou ◽  
Luca Ghita ◽  
Imke Steffen ◽  
...  

Viral encephalitis is a rare but serious syndrome. In addition to DNA-encoded herpes viruses, such as herpes simplex virus and varicella zoster virus, RNA-encoded viruses from the families of Flaviviridae, Rhabdoviridae and Paramyxoviridae are important neurotropic viruses. Whereas in the periphery, the role of Toll-like receptors (TLR) during immune stimulation is well understood, TLR functions within the CNS are less clear. On one hand, TLRs can affect the physiology of neurons during neuronal progenitor cell differentiation and neurite outgrowth, whereas under conditions of infection, the complex interplay between TLR stimulated neurons, astrocytes and microglia is just on the verge of being understood. In this review, we summarize the current knowledge about which TLRs are expressed by cell subsets of the CNS. Furthermore, we specifically highlight functional implications of TLR stimulation in neurons, astrocytes and microglia. After briefly illuminating some examples of viral evasion strategies from TLR signaling, we report on the current knowledge of primary immunodeficiencies in TLR signaling and their consequences for viral encephalitis. Finally, we provide an outlook with examples of TLR agonist mediated intervention strategies and potentiation of vaccine responses against neurotropic virus infections.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liya Sun ◽  
Rui Wang ◽  
Chenchen Wu ◽  
Jiameng Gong ◽  
Huiqiang Ma ◽  
...  

Macrophages play an important role in the initiation, progression and resolution of inflammation in many human diseases. Effective regulation of their activation and immune responses could be a promising therapeutic strategy to manage various inflammatory conditions. Nanodevices that naturally target macrophages are ideal agents to regulate immune responses of macrophages. Here we described a special tryptophan (Trp)-containing hexapeptide-coated gold nanoparticle hybrid, PW, which had unique immunomodulatory activities on macrophages. The Trp residues enabled PW higher affinity to cell membranes, and contributed to inducing mild pro-inflammatory responses of NF-κB/AP-1 activation. However, in the presence of TLR stimuli, PW exhibited potent anti-inflammatory activities through inhibiting multiple TLR signaling pathways. Mechanistically, PW was internalized primarily through micropinocytosis pathway into macrophages and attenuated the endosomal acidification process, and hence preferentially affected the endosomal TLR signaling. Interestingly, PW could induce the expression of the TLR negative regulator IRAK-M, which may also contribute to the observed TLR inhibitory activities. In two acute lung injury (ALI) mouse models, PW could effectively ameliorate lung inflammation and protect lung from injuries. This work demonstrated that nanodevices with thoughtful design could serve as novel immunomodulatory agents to manage the dysregulated inflammatory responses for treating many chronic and acute inflammatory conditions, such as ALI.


Sign in / Sign up

Export Citation Format

Share Document