Thermal polymerization of a brominated flame retardant in a glass-fiber-reinforced polypropylene?quantitative analysis

2003 ◽  
Vol 88 (6) ◽  
pp. 1506-1515 ◽  
Author(s):  
H. Dvir ◽  
M. Gottlieb ◽  
S. Daren
2013 ◽  
Vol 750-752 ◽  
pp. 85-89
Author(s):  
Xing Luo ◽  
Min He ◽  
Jian Bing Guo ◽  
Bin Wu

The effects of brominated flame retardant which composed of decabromodiphenyl ethane (DBDPE) and antimonous oxide (AO) on long glass fiber reinforced polypropylene (LGFPP) were investigated by means of limiting oxygen index (LOI), vertical burning (UL-94), thermogravimetry analysis (TGA), and mechanical properties. With the increase of DBDPE-AO content, the LOI values of DBDPE-AO/LGFPP composites increased from 21 to 27.6, and when the content of DBDPE-AO was 16wt%, the composites passed the V-0 rating in UL-94 testing. The experimental results showed that the brominated flame retardant improved flame retardancy of LGFPP, which was proved by the TGA testing. Whats more, the mechanical properties of composites even improved compared with pure LGFPP.


2013 ◽  
Vol 734-737 ◽  
pp. 2240-2243 ◽  
Author(s):  
Xing Luo ◽  
Min He ◽  
Jian Bing Guo ◽  
Kai Zhou Zhang ◽  
Bin Wu

An efficiently brominated flame retardant which composed of decabromodiphenyl oxide (DB) and antimonous oxide (AO) was used to flame retardant for long glass fiber reinforced polypropylene (LGFPP). In order to investigate the thermal stability, flame retardancy and mechanical property of DB-AO/LGFPP composites used by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical burning (UL-94) and mechanical property tests. The results showed that brominated flame retardant improved flame retardancy of LGFPP efficiently can be proved by TGA, and had less affected on mechanical properties.


2021 ◽  
Author(s):  
Zhenya Zhang ◽  
Kunpeng Cai ◽  
Yaxin Guo ◽  
Xiaohua Liu ◽  
Suqin He ◽  
...  

Abstract Halogen-free flame retardants are ideal plastic additives that meet carbon neutral requirements. In this work, halogen free flame retardant with glass fiber reinforced PA66/PPO composites were prepared by using coated red phosphorus (FRM-150B) and phosphorus-silicon flame retardant (WR6002). The mechanical properties, heat resistance, friction and wear properties and flame retardancy were carried out to evaluate the performances of composites using as structural parts that require heat resistance, dimensional stability and accuracy. It was found that the friction coefficient and wear volume of the composites were improved with the contents of glass fiber increased, as a result, PA66/PPO composites was obtained with excellent comprehensive performance when the content of compatilizer is 7%, the glass fiber was 30%, the content of FRM is 8% and the phosphorous-silicon flame retardant is 16%. The flame retardant effect of FRM-150B and WR6002 in PA66/PPO was presented in the condensed phase, the results showed that the composite material with 16% WR6002 forms a carbon layer with excellent thermal stability. On the other hand, the mechanical properties of composites were hardly affected, has important prospects in automotive components and household appliances


Sign in / Sign up

Export Citation Format

Share Document