Structure and properties of microporous membranes prepared by applying phase separation during polymerization

1980 ◽  
Vol 25 (10) ◽  
pp. 2273-2283 ◽  
Author(s):  
Yukio Mizutani ◽  
Masakatsu Nishimura
2016 ◽  
Vol 848 ◽  
pp. 726-732 ◽  
Author(s):  
Rong Liu ◽  
Yan Wang ◽  
Jing Zhu ◽  
Zu Ming Hu ◽  
Jun Rong Yu

The effects of Modified NanoSiO2 Agents on the morphology and performance of ultra-high-molecular weight polyethylene (UHMWPE) microporous membranes via thermally induced phase separation were investigated in this work. The NanoSiO2 was surface modified by silane coupling agent KH570 (KH570-NanoSiO2). Differential scanning calorimetry (DSC) and X-Ray Diffraction (XRD) were performed to obtain crystallization of UHMWPE/white oil/ KH570-NanoSiO2 doped system. The morphology and performance of the prepared UHMWPE microporous membranes were characterized with scanning electron microscopy (SEM) and microfiltration experiments. The results showed that the morphology of UHMWPE membrane could be disturbed by KH570-NanoSiO2. Porosity and the rejection of Bovine serum albumin (BSA) of the blend membrane increased with increasing concentration of Modified NanoSiO2, while the water flux slightly decreased.


2020 ◽  
Vol 993 ◽  
pp. 906-914
Author(s):  
Xiao Na Wang ◽  
Yue Mu ◽  
Guo Qun Zhao ◽  
Jia Cheng Gao ◽  
You Lei Zhou ◽  
...  

UHMWPE microporous membranes were prepared via thermally induced phase separation(TIPS) combining with stretching. TIPS method was adopted to resolve processing difficulties of UHMEPE, and the subsequent stretching was used to optimize pore structure. The preparation process utilized liquid paraffin (LP) as the diluent. The effect of different stretching ratios on pore structure was investigated through SEM, XRD and mercury intrusion test. The results indicated that stretching process not only greatly improved the pore size uniformity and pore distribution uniformity, but also had a great influence on pore size controlling. When the stretching ratio was lower than 80%, the pore size was concentrated in nano-region which pore size distribution was around 0.02-0.03 μm. While the stretching ratio was larger than 80%, due to bridging breakage and liquid paraffin movement, pore size was concentrated in the micron area where pore size mainly distributed around 1μm, which had a practical significance for controlling the pore size of membranes in industrial production. And it’s obtained that at the same concentration of UHMWPE, the microporous membranes prepared in this study have more uniform pore structures than those reported previously.


Sign in / Sign up

Export Citation Format

Share Document